1
|
Du Z, Zhang J, Wang X, Zhuang Z, Liu Z. Bridging biomechanics with neuropathological and neuroimaging insights for mTBI understanding through multiscale and multiphysics computational modeling. Biomech Model Mechanobiol 2025; 24:361-381. [PMID: 39934580 DOI: 10.1007/s10237-024-01924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025]
Abstract
Mild traumatic brain injury (mTBI) represents a significant public health challenge in modern society. An in-depth analysis of the injury mechanisms, pathological forms, and assessment criteria of mTBI has underscored the pivotal role of craniocerebral models in comprehending and addressing mTBI. Research indicates that although existing finite element craniocerebral models have made strides in simulating the macroscopic biomechanical responses of the brain, they still fall short in accurately depicting the complexity of mTBI. Consequently, this paper emphasizes the necessity of integrating biomechanics, neuropathology, and neuroimaging to develop multiscale and multiphysics craniocerebral models, which are crucial for precisely capturing microscopic injuries, establishing pathological mechanical indicators, and simulating secondary and long-term brain functional impairments. The comprehensive analysis and in-depth discussion presented in this paper offer new perspectives and approaches for understanding, diagnosing, and preventing mTBI, potentially contributing to alleviating the global burden of mTBI.
Collapse
Affiliation(s)
- Zhibo Du
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiarui Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinghao Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhuo Zhuang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
2
|
Breeze J, Fryer RN, Nguyen TTN, Ramasamy A, Pope D, Masouros SD. Injury modelling for strategic planning in protecting the national infrastructure from terrorist explosive events. BMJ Mil Health 2023; 169:565-569. [PMID: 35241623 DOI: 10.1136/bmjmilitary-2021-002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Terrorist events in the form of explosive devices have occurred and remain a threat currently to the population and the infrastructure of many nations worldwide. Injuries occur from a combination of a blast wave, energised fragments, blunt trauma and burns. The relative preponderance of each injury mechanism is dependent on the type of device, distance to targets, population density and the surrounding environment, such as an enclosed space, to name but a few. One method of primary prevention of such injuries is by modification of the environment in which the explosion occurs, such as modifying population density and the design of enclosed spaces. The Human Injury Predictor (HIP) tool is a computational model which was developed to predict the pattern of injuries following an explosion with the goal to inform national injury prevention strategies from terrorist attacks. HIP currently uses algorithms to predict the effects from primary and secondary blast and allows the geometry of buildings to be incorporated. It has been validated using clinical data from the '7/7' terrorist attacks in London and the 2017 Manchester Arena terrorist event. Although the tool can be used readily, it will benefit from further development to refine injury representation, validate injury scoring and enable the prediction of triage states. The tool can assist both in the design of future buildings and methods of transport, as well as the situation of critical emergency services required in the response following a terrorist explosive event. The aim of this paper is to describe the HIP tool in its current version and provide a roadmap for optimising its utility in the future for the protection of national infrastructure and the population.
Collapse
Affiliation(s)
- Johno Breeze
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
- Bioengineering, Imperial College London, London, UK
| | | | - T-T N Nguyen
- Bioengineering, Imperial College London, London, UK
| | - A Ramasamy
- Bioengineering, Imperial College London, London, UK
- Trauma and Orthopaedics, Milton Keynes Hospital NHS Foundation Trust, Milton Keynes, UK
| | - D Pope
- Physical Sciences Department, Defence Science and Technology Laboratory, Salisbury, UK
| | - S D Masouros
- Bioengineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Du Z, Wang P, Luo P, Fei Z, Zhuang Z, Liu Z. Mechanical mechanism and indicator of diffuse axonal injury under blast-type acceleration. J Biomech 2023; 156:111674. [PMID: 37300977 DOI: 10.1016/j.jbiomech.2023.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Diffuse axonal injury (DAI) caused by acceleration is one of the most prominent forms of blast-induced Traumatic Brain Injury. However, the mechanical mechanism and indicator of axonal deformation-induced injury under blast-type acceleration with high peak and short duration are unclear. This study constructed a multilayer head model that can reflect the response characteristics of translational and rotational acceleration (the peak time of which is within 0.5 ms). Based on von Mises stress, axonal strain and axonal strain rate indicators, the physical process of axonal injury is studied, and the vulnerable area under blast-type acceleration load is given. In the short term (within 1.75 ms), dominated by sagittal rotational acceleration peaks, the constraint of falx and tentorium rapidly imposes the inertial load on the brain tissue, resulting in a high-rate deformation of axons (axonal strain rate of which exceed 100 s-1). For a long term (after 1.75 ms), fixed-point rotation of the brain following the head causes excessive distortion of brain tissue (von Mises stress of which exceeds 15 kPa), resulting in a large axonal stretch strain where the main axonal orientation coincides with the principal strain direction. It is found that the axonal strain rate can better indicate the pathological axonal injury area and coincides with external inertial loading in the risk areas, which suggests that DAI under blast-type acceleration overload is mainly caused by the rapid axonal deformation instead of by the excessive axonal strain. The research in this paper helps understand and diagnose blast-induced DAI.
Collapse
Affiliation(s)
- Zhibo Du
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
| | - Peng Wang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China; School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhuo Zhuang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Du Z, Li Z, Wang P, Wang X, Zhang J, Zhuang Z, Liu Z. Revealing the Effect of Skull Deformation on Intracranial Pressure Variation During the Direct Interaction Between Blast Wave and Surrogate Head. Ann Biomed Eng 2022; 50:1038-1052. [PMID: 35668281 DOI: 10.1007/s10439-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
Abstract
Intracranial pressure (ICP) during the interaction between blast wave and the head is a crucial evaluation criterion for blast-induced traumatic brain injury (bTBI). ICP variation is mainly induced by the blast wave transmission and skull deformation. However, how the skull deformation influences the ICP remains unclear, which is meaningful for mitigating bTBI. In this study, both experimental and numerical models are developed to elucidate the effect of skull deformation on ICP variation. Firstly, we performed the shock tube experiment of the high-fidelity surrogate head to measure the ICP, the blast overpressure, and the skull surface strain of specific positions. The results show that the ICP profiles of all measured points show oscillations with positive and negative change, and the variation is consistent with the skull surface strain. Further numerical analysis reveals that when the blast wave reaches the measured point, the peak overpressure transmits directly through the skull to the brain, forming the local positive ICP peak, and the impulse induces the local inward deformation of the skull. As the peak overpressure passes through, the blast impulse impacts the nearby skull supported by the soft and incompressible brain tissue and extrudes the skull outward in the initial position. The inward and outward skull deformation leads to the oscillation of ICP. These numerical analyses agree with experimental results, which explain the appearance of negative and positive ICP peaks and the synchronization of negative ICP with surface strain. The study has implications for medical injury diagnosis and protective equipment design.
Collapse
Affiliation(s)
- Zhibo Du
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhijie Li
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Peng Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinghao Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiarui Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhuo Zhuang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
5
|
Li W, Shepherd DET, Espino DM. Investigation of the Compressive Viscoelastic Properties of Brain Tissue Under Time and Frequency Dependent Loading Conditions. Ann Biomed Eng 2021; 49:3737-3747. [PMID: 34608583 PMCID: PMC8671270 DOI: 10.1007/s10439-021-02866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 10/25/2022]
Abstract
The mechanical characterization of brain tissue has been generally analyzed in the frequency and time domain. It is crucial to understand the mechanics of the brain under realistic, dynamic conditions and convert it to enable mathematical modelling in a time domain. In this study, the compressive viscoelastic properties of brain tissue were investigated under time and frequency domains with the same physical conditions and the theory of viscoelasticity was applied to estimate the prediction of viscoelastic response in the time domain based on frequency-dependent mechanical moduli through Finite Element models. Storage and loss modulus were obtained from white and grey matter, of bovine brains, using dynamic mechanical analysis and time domain material functions were derived based on a Prony series representation. The material models were evaluated using brain testing data from stress relaxation and hysteresis in the time dependent analysis. The Finite Element models were able to represent the trend of viscoelastic characterization of brain tissue under both testing domains. The outcomes of this study contribute to a better understanding of brain tissue mechanical behaviour and demonstrate the feasibility of deriving time-domain viscoelastic parameters from frequency-dependent compressive data for biological tissue, as validated by comparing experimental tests with computational simulations.
Collapse
Affiliation(s)
- Weiqi Li
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Duncan E T Shepherd
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel M Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Huang X, Hu X, Zhang L, Cai Z. Craniocerebral Dynamic Response and Cumulative Effect of Damage Under Repetitive Blast. Ann Biomed Eng 2021; 49:2932-2943. [PMID: 33655420 DOI: 10.1007/s10439-021-02746-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Soldiers suffer from multiple explosions in complex battlefield environment resulting in aggravated brain injuries. At present, researches mostly focus on the damage to human body caused by single explosion. In the repetitive impact study, small animals are mainly used for related experiments to study brain nerve damage. No in-depth research has been conducted on the dynamic response and damage of human brain under repetitive explosion shock waves. Therefore, this study use the Euler-Lagrange coupling method to construct an explosion shock wave-head fluid-structure coupling model, and numerically simulated the brain dynamic response subjected to single and repetitive blast waves, obtained flow field pressure, skull stress, skull displacement, intracranial pressure to analyze the brain damage. The simulation results of 100 g equivalent of TNT exploding at 1 m in front of the craniocerebral show that repetitive blast increase skull stress, intracranial pressure, skull displacement, and the damage of brain tissue changes from moderate to severe. Repetitive blasts show a certain cumulative damage effect, the severity of damage caused by double blast is 122.5% of single shock, and the severity of damage caused by triple blast is 105.9% of double blast and 131.5% of single blast. The data above shows that it is necessary to reduce soldiers' exposure from repetitive blast waves.
Collapse
Affiliation(s)
- Xingyuan Huang
- Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoping Hu
- Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Lei Zhang
- Research Institute for National Defense Engineering of Academy of Military Science PLA China, Luoyang, 471023, China.
| | - Zhihua Cai
- Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
9
|
Sekine Y, Saitoh D, Yoshimura Y, Fujita M, Araki Y, Kobayashi Y, Kusumi H, Yamagishi S, Suto Y, Tamaki H, Ono Y, Mizukaki T, Nemoto M. Efficacy of Body Armor in Protection Against Blast Injuries Using a Swine Model in a Confined Space with a Blast Tube. Ann Biomed Eng 2021; 49:2944-2956. [PMID: 33686618 PMCID: PMC8510944 DOI: 10.1007/s10439-021-02750-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to clarify whether or not body armor would protect the body of a swine model using a blast tube built at National Defense Medical College, which is the first such blast tube in Japan. Seventeen pigs were divided into two groups: the body armor group and the non-body armor group. Under intravenous anesthesia, the pigs were tightly fixed in the left lateral position on a table and exposed from the back neck to the upper lumbar back to the blast wave and wind with or without body armor, with the driving pressure of the blast tube set to 3.0 MPa. When the surviving and dead pigs were compared, blood gas analyses revealed significant differences in PaO2, PaCO2, and pH in the super-early phase. All pigs injured by the blast wave and wind had lung hemorrhage. All 6 animals in the body armor group and 6 of the 11 animals in the control group survived for 3 hours after injury. Respiratory arrest immediately after exposure to the blast wave was considered to influence the mortality in our pig model. Body armor may have a beneficial effect in protecting against respiratory arrest immediately after an explosion.
Collapse
Affiliation(s)
- Yasumasa Sekine
- Division of Traumatology, Research Institute, National Defense Medical College (NDMC), 3-2 Namiki, Tokorozawa, 359-8513 Japan ,Dept. of Traumatology and Critical Care Medicine, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan ,Dept. of Emergency and Trauma Care, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298 Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College (NDMC), 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Yuya Yoshimura
- Dept. of Traumatology and Critical Care Medicine, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Yoshiyuki Araki
- Dept. of Defense Medicine, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | | | - Hitomi Kusumi
- Dept. of Military Nursing, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Satomi Yamagishi
- Dept. of Military Nursing, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Yuki Suto
- Division of Traumatology, Research Institute, National Defense Medical College (NDMC), 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Hiroshi Tamaki
- Division of Graduate School, Dept. of Academic Affairs, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan
| | - Yosuke Ono
- Department of General Medicine, NDMC, 3-2 Namiki, Tokorozawa, 359-8513 Japan ,Military Medicine Research Unit, Test and Evaluation Command, Japan Ground Self Defense Force, 1-2-24 Ikejiri, setagaya-ku, Tokyo, 154-0004 Japan
| | - Toshiharu Mizukaki
- Dept. of Aeronautics and Astronautics, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| | - Manabu Nemoto
- Dept. of Emergency and Trauma Care, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298 Japan
| |
Collapse
|
10
|
Horstemeyer MF, Panzer MB, Prabhu RK. State-of-the-Art Modeling and Simulation of the Brain’s Response to Mechanical Loads. Ann Biomed Eng 2019; 47:1829-1831. [DOI: 10.1007/s10439-019-02351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|