1
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
2
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
3
|
Zheng Z, Xu W, Xu Y, Xue Q. Mapping knowledge structure and themes trends of biodegradable Mg-based alloy for orthopedic application: A comprehensive bibliometric analysis. Front Bioeng Biotechnol 2022; 10:940700. [PMID: 36017343 PMCID: PMC9395602 DOI: 10.3389/fbioe.2022.940700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Since Lambotte and Payr first studied Mg-based alloys for orthopedics in 1900, the research of this field has finally ushered in vigorous development in the 21st century. From the perspective of quantitative analysis, this paper clearly demonstrated the global research trend from 2005 to 2021 by using bibliometrics and scientometric analysis. Methods: We obtained the publications from the Web of Science Core Collection (WoSCC) database. The bibliometric and scientometric analysis was conducted by using R software, CiteSpace software, VOSviewer software, Pajek software and Microsoft Excel program. Results: In total, 1921 publications were retrieved. It can be found that the number of publications is gradually increasing year by year. We can find that the most prolific countrie, institution and researcher are China, Chinese Academy of Sciences and Zheng Yufeng, respectively. The most influential journals in this field are Acta Biomaterialia and Biomaterials, with 16,511 and 12,314 total citations, respectively. By conducting the co-cited documents-based clustering analysis, 16 research hotspots and their representative studies have been identified. Besides, by conducting analysis of keywords, we divided the keyword citation bursts representing the development of the field into three stages. Conclusion: The number of researches on the biodegradable Mg-based alloys increased sharply all over the world in the 21st century. China has made significant progress in biodegradable Mg-based alloy research. More focus will be placed on osteogenic differentiation, fabrication, graphene oxide, antibacterial property, bioactive glass and nanocomposite, which may be the next popular topics in the field.
Collapse
Affiliation(s)
- Zitian Zheng
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Wennan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
- *Correspondence: Qingyun Xue,
| |
Collapse
|
4
|
Current and Emerging Bioresorbable Metallic Scaffolds: An Insight into Their Development, Processing and Characterisation. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00276-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Aram E, Mehdipour-Ataei S. Carbon-based nanostructured composites for tissue engineering and drug delivery. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1785456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, Iran
| | | |
Collapse
|
6
|
Peng F, Cheng S, Zhang R, Li M, Zhou J, Wang D, Zhang Y. Zn-contained mussel-inspired film on Mg alloy for inhibiting bacterial infection and promoting bone regeneration. Regen Biomater 2021; 8:rbaa044. [PMID: 33732490 PMCID: PMC7947588 DOI: 10.1093/rb/rbaa044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/01/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023] Open
Abstract
Infection and insufficient osteointegration are the main causes of orthopedic implant failure. Furthermore, activating favorable inflammation response is vital to the fast osteointegration of implants. Therefore, endowing the implants with multifunctions (antibacterial, anti-inflammation, and pro-osteointegration) is a promising strategy to improve the performance of orthopedic implants. In this study, a Zn-contained polydopamine (PDA) film was fabricated on AZ31 alloy. The film possessed a stable Zn ion release in 14 days. The results of electrochemical analysis implied the favorable corrosion protection of the film, and thus, leading to a suitable hemolysis ratio (below 1%). The in vitro antibacterial assessment revealed that the film exhibited excellent resistance against Staphylococcus aureus (nearly 100%), which can be ascribed to the release of Zn ions. The cell-culture evaluation revealed that the extract of Zn-contained PDA-coated sample can activate RAW264.7 polarization to an anti-inflammatory phenotype, as well as enhance the osteogenic differentiation ability of MC3T3-E1. Additionally, the femoral osteomyelitis model indicated that the as-prepared film had a high antibacterial capability at early stage of the implantation, and showed better osteogenesis and osteointegration after 8 weeks of implantation. With favorable antibacterial, anti-inflammation, and pro-osteogenesis abilities, the novel designed Zn-contained PDA film is promising to be used in Mg-based orthopedic implants.
Collapse
Affiliation(s)
- Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ruiying Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Mei Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
7
|
Rahmati M, Stötzel S, Khassawna TE, Iskhahova K, Florian Wieland DC, Zeller Plumhoff B, Haugen HJ. Early osteoimmunomodulatory effects of magnesium-calcium-zinc alloys. J Tissue Eng 2021; 12:20417314211047100. [PMID: 34589198 PMCID: PMC8474317 DOI: 10.1177/20417314211047100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Today, substantial attention is given to biomaterial strategies for bone regeneration, and among them, there is a growing interest in using immunomodulatory biomaterials. The ability of a biomaterial to induce neo vascularization and macrophage polarization is a major factor in defining its success. Magnesium (Mg)-based degradable alloys have attracted significant attention for bone regeneration owing to their biodegradability and potential for avoiding secondary removal surgeries. However, there is insufficient evidence in the literature regarding the early inflammatory responses to these alloys in vivo. In this study, we investigated the early body responses to Mg-0.45wt%Zn-0.45wt%Ca pin-shaped alloy (known as ZX00 alloy) in rat femora 2, 5, and 10 days after implantation. We used 3D micro computed tomography (µCT), histological, immunohistochemical, histomorphometrical, and small angle X-ray scattering (SAXS) analyses to study new bone formation, early macrophage polarization, neo vascularization, and bone quality at the implant bone interface. The expression of macrophage type 2 biological markers increased significantly after 10 days of Mg alloy implantation, indicating its potential in stimulating macrophage polarization. Our biomineralization results using µCT as well as histological stained sections did not indicate any statistically significant differences between different time points for both groups. The activity of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (Runx 2) biological markers decreased significantly for Mg group, indicating less osteoblast activity. Generally, our results supported the potential of ZX00 alloy to enhance the expression of macrophage polarization in vivo; however, we could not observe any statistically significant changes regarding biomineralization.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute
for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sabine Stötzel
- Experimental Trauma Surgery,
Justus-Liebig University Giessen, Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery,
Justus-Liebig University Giessen, Giessen, Germany
- Faculty of Health Sciences, University
of Applied Sciences, Giessen, Germany
| | - Kamila Iskhahova
- Institute of Metallic Biomaterials,
Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - DC Florian Wieland
- Institute of Metallic Biomaterials,
Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | | | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
for Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Dutta S, Gupta S, Roy M. Recent Developments in Magnesium Metal-Matrix Composites for Biomedical Applications: A Review. ACS Biomater Sci Eng 2020; 6:4748-4773. [PMID: 33455211 DOI: 10.1021/acsbiomaterials.0c00678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, there is a growing interest in developing magnesium (Mg) based degradable biomaterial. Although corrosion is a concern for Mg, other physical properties, such as low density and Young's modulus, combined with good biocompatibility, lead to significant research and development in this area. To address the issues of corrosion and low yield strength of pure Mg, several approaches have been adopted, such as, composite preparation with suitable bioactive reinforcements, alloying, or surface modifications. This review specifically focuses on recent developments in Mg-based metal matrix composites (MMCs) for biomedical applications. Much effort has gone into finding suitable bioactive, bioresorbable reinforcements and processing techniques that can improve upon existing materials. In summary, this review provides a comprehensive overview of existing Mg-based composite preparation and their mechanical and corrosion properties and biological responses and future perspectives on the development of Mg-based composite biomaterials.
Collapse
Affiliation(s)
- Sourav Dutta
- Advanced Technology Development Centre, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
Cheng S, Wang W, Wang D, Li B, Zhou J, Zhang D, Liu L, Peng F, Liu X, Zhang Y. An in vitro and in vivo comparison of Mg(OH) 2-, MgF 2- and HA-coated Mg in degradation and osteointegration. Biomater Sci 2020; 8:3320-3333. [PMID: 32432240 DOI: 10.1039/d0bm00467g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium hydroxide (Mg(OH)2), magnesium fluoride (MgF2), and hydroxyapatite (HA) films on Mg are widely studied owing to their easy preparation and favorable corrosion protection. Nevertheless, the most suitable film with the best performance for biomedical applications between the three films remains unknown. Therefore, the performance of the three coatings from in vitro to in vivo must be systematically investigated. In this study, Mg(OH)2, MgF2, and HA films were fabricated on pure Mg. Electrochemical analysis and the hydrogen evolution test suggested that the HA film showed the best in vitro corrosion resistance, followed by MgF2 and Mg(OH)2 films. In vitro cell culture indicated that the extract of the MgF2-coated sample was most beneficial for the osteogenic differentiation of MC3T3-E1 cells and the vascularization of human umbilical vein endothelial cells (HUVECs), which might be ascribed to the existence of the F element in the film. The result of this subcutaneous implantation showed that the HA film exhibited the best in vivo corrosion resistance and induced the lightest inflammatory response. Femoral implantation data revealed that the HA film exhibited the best osseointegration. Furthermore, the major organs and blood indicators of all of the tested rats were normal in 8 weeks. In summary, though the in vitro biological performance of the MgF2 film was the best among the three films, the HA film showed the best in vivo performance, suggesting that it is a more promising modification method for orthopedic applications.
Collapse
Affiliation(s)
- Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shah N, Zaman T, Rehan T, Khan S, Khan W, Khan A, Ul-Islam M. Preparation and Characterization of Agar Based Magnetic Nanocomposite for Potential Biomedical Applications. Curr Pharm Des 2019; 25:3672-3680. [PMID: 31604415 DOI: 10.2174/1381612825666191011113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of the present study was to make a biocompatible agar based composite material via incorporation of appropriate additives within the agar matrix for potential applications in drug delivery and biomedical fields. METHODOLOGY Agar based composites were prepared by the incorporation of magnetic iron oxide nano particles, graphite and sodium aluminum as additives in different proportions within the agar matrix by a simple thermophysico- mechanical method. The as prepared agar based composites were then characterized by different techniques i.e. FTIR, SEM, TGA, XRD and EDX analyses. The FTIR peaks confirmed the presence of each component in the agar composite. SEM images showed the uniform distribution of each component in the agar composite. TGA study showed the thermal stability range of different composite sheets. XRD pattern revealed the crystallinity and EDX analysis confirmed the elemental composition of the prepared composites. The prepared agar based composites were evaluated for antimicrobial activities against three pathogenic bacterial strains Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia and the result indicated efficient antimicrobial activities for all composites. CONCLUSION From the overall study, it was concluded that due to the non-toxic nature, thermal stability and excellent antibacterial properties, the prepared agar based composites can receive potential biomedical applications.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Tahir Zaman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
12
|
The Effects of 4%Fe on the Performance of Pure Zinc as Biodegradable Implant Material. Ann Biomed Eng 2019; 47:1400-1408. [DOI: 10.1007/s10439-019-02245-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
|