1
|
Pisani S, Evangelista A, Chesi L, Croce S, Avanzini MA, Dorati R, Genta I, Benazzo M, Comoli P, Conti B. Nanofibrous Scaffolds' Ability to Induce Mesenchymal Stem Cell Differentiation for Soft Tissue Regenerative Applications. Pharmaceuticals (Basel) 2025; 18:239. [PMID: 40006052 PMCID: PMC11859969 DOI: 10.3390/ph18020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have gained recognition as a highly versatile and promising cell source for repopulating bioengineered scaffolds due to their inherent capacity to differentiate into multiple cell types. However, MSC implantation techniques have often yielded inconsistent clinical results, underscoring the need for advanced approaches to enhance their therapeutic efficacy. Recent developments in three-dimensional (3D) bioengineered scaffolds have provided a significant breakthrough by closely mimicking the in vivo environment, addressing the limitations of traditional two-dimensional (2D) cell cultures. Among these, nanofibrous scaffolds have proven particularly effective, offering an optimal 3D framework, growth-permissive substrates, and the delivery of trophic factors crucial for MSC survival and regeneration. Furthermore, the selection of appropriate biomaterials can amplify the paracrine effects of MSCs, promoting both proliferation and targeted differentiation. The synergistic combination of MSCs with nanofibrous scaffolds has demonstrated remarkable potential in achieving repair, regeneration, and tissue-specific differentiation with enhanced safety and efficacy, paving the way for routine clinical applications. In this review, we examine the most recent studies (2013-2023) that explore the combined use of MSCs and nanofibrous scaffolds for differentiation into cardiogenic, epithelial, myogenic, tendon, and vascular cell lineages. Using PubMed, we identified and analyzed 275 relevant articles based on the search terms "Nanofibers", "Electrospinning", "Mesenchymal stem cells", and "Differentiation". This review highlights the critical advancements in the use of nanofibrous scaffolds as a platform for MSC differentiation and tissue regeneration. By summarizing key findings from the last decade, it provides valuable insights for researchers and clinicians aiming to optimize scaffold design, MSC integration, and translational applications. These insights could significantly influence future research directions and the development of more effective regenerative therapies.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Aleksandra Evangelista
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Luca Chesi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Maria Antonietta Avanzini
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Patrizia Comoli
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| |
Collapse
|
2
|
Wang N, Chen J, Hu Q, He Y, Shen P, Yang D, Wang H, Weng D, He Z. Small diameter vascular grafts: progress on electrospinning matrix/stem cell blending approach. Front Bioeng Biotechnol 2024; 12:1385032. [PMID: 38807647 PMCID: PMC11130446 DOI: 10.3389/fbioe.2024.1385032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
The exploration of the next-generation small diameter vascular grafts (SDVGs) will never stop until they possess high biocompatibility and patency comparable to autologous native blood vessels. Integrating biocompatible electrospinning (ES) matrices with highly bioactive stem cells (SCs) provides a rational and promising solution. ES is a simple, fast, flexible and universal technology to prepare extracellular matrix-like fibrous scaffolds in large scale, while SCs are valuable, multifunctional and favorable seed cells with special characteristics for the emerging field of cell therapy and regenerative medicine. Both ES matrices and SCs are advanced resources with medical application prospects, and the combination may share their advantages to drive the overcoming of the long-lasting hurdles in SDVG field. In this review, the advances on SDVGs based on ES matrices and SCs (including pluripotent SCs, multipotent SCs, and unipotent SCs) are sorted out, and current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Jiajing Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Qingqing Hu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Yunfeng He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Pu Shen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Dingkun Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Second Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Wang M, Mequanint K. Preparation and Microscopic Mechanical Characterization of L-Methionine-Based Polyphosphazene Fibrous Mats for Vascular Tissue Engineering. Pharmaceutics 2023; 15:2546. [PMID: 38004526 PMCID: PMC10674633 DOI: 10.3390/pharmaceutics15112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigates the mechanical properties, degradation behavior, and biocompatibility of poly[(α-amino acid ester) phosphazene] electrospun fibers based on the ethyl ester of L-methionine (PαAPz-M), a material with potential applications in tissue engineering. We utilized atomic force microscopy (AFM) to evaluate the fiber mechanical characteristics and calculate its Young's modulus, revealing it to closely mimic the stiffness of a natural extracellular matrix (ECM). We also studied the degradation behavior of PαAPz-M scaffolds over 21 days, showing that they maintain the highly porous structure required for tissue engineering. Further evaluation of mesenchymal multipotent 10T1/2 cell and mesenchymal stem cell (MSC) behavior on the scaffolds demonstrated significant cell viability, proliferation, and successful MSC differentiation into smooth muscle cells. Expression of collagen and elastin by MSCs on the fiber mats highlighted potential ECM formation during scaffold degradation, confirming PαAPz-M as a promising material for vascular tissue engineering.
Collapse
Affiliation(s)
| | - Kibret Mequanint
- Department of Chemical & Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
| |
Collapse
|
4
|
Abstract
Biodegradable and biocompatible biomaterials have offered much more opportunities from an engineering standpoint for treating diseases and maintaining health. Poly(ester amide)s (PEAs), as an outstanding family among such biomaterials, have risen overwhelmingly in the past decades. These synthetic polymers have easily and widely available raw materials and a diversity of synthetic approaches, which have attracted considerable attention. More importantly, combining the superiorities of polyamides and polyesters, PEAs have emerged with better functions. They could have improved biodegradability, biocompatibility, and cell-material interactions. The PEAs derived from α-amino acids even allow the introduction of pendant sites for further modification or functionalization. Meanwhile, it is gradually recognized that the chemical structures are closely related to the physiochemical and biological properties of PEAs so that their properties can be precisely controlled. PEAs therefore become significant materials in the biomedical fields. This review will attempt to summarize the recent progress in the development of PEAs with respect to the preparation materials and methods, structure-property relationships along with their latest biomedical accomplishments, especially for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
5
|
Yan Y, Wang X, Zhu G. Endometrium Derived Stem Cells as Potential Candidates in Nervous System Repair. Ann Biomed Eng 2022; 50:485-498. [PMID: 35235077 DOI: 10.1007/s10439-022-02909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/01/2022] [Indexed: 11/24/2022]
Abstract
Limited cell division and lack of endogenous repair mechanisms in the central nervous system, hampers tissue repair following neurodegenerative diseases or tissue injuries. Unlike central nervous system; peripheral nervous system has some capacity to repair after injury, but in case of critical sized defects the use of supporting cells in the neural guidance channels seems inevitable to obtain a satisfactory functional recovery. Stem cell therapies have provided new frontiers in the repair of nervous system largely through paracrine secretion mechanisms. The therapeutic potential of stem cells differs according to their tissue of origin, mode of isolation, administration route, and passage number. During the past decades, studies have been focused on stem cells harvested from disposable tissues such as menstrual blood or biopsies from endometrium. These cells are characterized by their high differentiation and proliferation potential, ease of harvest, and lack of ethical concerns. In the current review, we will discuss the prospects and challenges of endometrial stem cells' application in nervous system repair.
Collapse
Affiliation(s)
- Yifen Yan
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Zhong Road, Shiyan City, 442000, Hubei Province, China
| | - Xiaoli Wang
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Zhong Road, Shiyan City, 442000, Hubei Province, China
| | - Guijuan Zhu
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Zhong Road, Shiyan City, 442000, Hubei Province, China.
| |
Collapse
|
6
|
Preparation of Poly(ε-caprolactone)/Poly(ester amide) Electrospun Membranes for Vascular Repair. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1480-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
8
|
Liu Q, Zhu Y, Zhu W, Zhang G, Yang YP, Zhao C. The role of MicroRNAs in tendon injury, repair, and related tissue engineering. Biomaterials 2021; 277:121083. [PMID: 34488121 PMCID: PMC9235073 DOI: 10.1016/j.biomaterials.2021.121083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
Tendon injuries are one of the most common musculoskeletal disorders that cause considerable morbidity and significantly compromise the patients' quality of life. The innate limited regenerative capacity of tendon poses a substantial treating challenge for clinicians. MicroRNAs (miRNAs) are a family of small non-coding RNAs that play a vital role in orchestrating many biological processes through post-transcriptional regulation. Increasing evidence reveals that miRNA-based therapeutics may serve as an innovative strategy for the treatment of tendon pathologies. In this review, we briefly present miRNA biogenesis, the role of miRNAs in tendon cell biology and their involvement in tendon injuries, followed by a summary of current miRNA-based approaches in tendon tissue engineering with a special focus on attenuating post-injury fibrosis. Next, we discuss the advantages of miRNA-functionalized scaffolds in achieving sustained and localized miRNA administration to minimize off-target effects, and thus hoping to inspire the development of effective miRNA delivery platforms specifically for tendon tissue engineering. We envision that advancement in miRNA-based therapeutics will herald a new era of tendon tissue engineering and pave a way for clinical translation for the treatments of tendon disorders.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yaxi Zhu
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, (by courtesy) Materials Science and Engineering, and Bioengineering, Stanford University, Stanford, CA, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Immobilization of Jagged1 Enhances Vascular Smooth Muscle Cells Maturation by Activating the Notch Pathway. Cells 2021; 10:cells10082089. [PMID: 34440858 PMCID: PMC8391929 DOI: 10.3390/cells10082089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
In Notch signaling, the Jagged1-Notch3 ligand-receptor pairing is implicated for regulating the phenotype maturity of vascular smooth muscle cells. However, less is known about the role of Jagged1 presentation strategy in this regulation. In this study, we used bead-immobilized Jagged1 to direct phenotype control of primary human coronary artery smooth muscle cells (HCASMC), and to differentiate embryonic multipotent mesenchymal progenitor (10T1/2) cell towards a vascular lineage. This Jagged1 presentation strategy was sufficient to activate the Notch transcription factor HES1 and induce early-stage contractile markers, including smooth muscle α-actin and calponin in HCASMCs. Bead-bound Jagged1 was unable to regulate the late-stage markers myosin heavy chain and smoothelin; however, serum starvation and TGFβ1 were used to achieve a fully contractile smooth muscle cell. When progenitor 10T1/2 cells were used for Notch3 signaling, pre-differentiation with TGFβ1 was required for a robust Jagged1 specific response, suggesting a SMC lineage commitment was necessary to direct SMC differentiation and maturity. The presence of a magnetic tension force to the ligand-receptor complex was evaluated for signaling efficacy. Magnetic pulling forces downregulated HES1 and smooth muscle α-actin in both HCASMCs and progenitor 10T1/2 cells. Taken together, this study demonstrated that (i) bead-bound Jagged1 was sufficient to activate Notch3 and promote SMC differentiation/maturation and (ii) magnetic pulling forces did not activate Notch3, suggesting the bead alone was able to provide necessary clustering or traction forces for Notch activation. Notch is highly context-dependent; therefore, these findings provide insights to improve biomaterial-driven Jagged1 control of SMC behavior.
Collapse
|
10
|
Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Electrospinning of Biomaterials for Vascular Regeneration. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Methods of synthesis, characterization and biomedical applications of biodegradable poly(ester amide)s- A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Dayekh K, Mequanint K. The effects of progenitor and differentiated cells on ectopic calcification of engineered vascular tissues. Acta Biomater 2020; 115:288-298. [PMID: 32853805 DOI: 10.1016/j.actbio.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Ectopic vascular calcification associated with aging, diabetes mellitus, atherosclerosis, and chronic kidney disease is a considerable risk factor for cardiovascular events and death. Although vascular smooth muscle cells are primarily implicated in calcification, the role of progenitor cells is less known. In this study, we engineered tubular vascular tissues from embryonic multipotent mesenchymal progenitor cells either without differentiating or after differentiating them into smooth muscle cells and studied ectopic calcification through targeted gene analysis. Tissues derived from both differentiated and undifferentiated cells calcified in response to hyperphosphatemic inorganic phosphate (Pi) treatment suggesting that a single cell-type (progenitor cells or differentiated cells) may not be the sole cause of the process. We also demonstrated that Vitamin K, which is the matrix gla protein activator, had a protective role against calcification in engineered vascular tissues. Addition of partially-soluble elastin upregulated osteogenic marker genes suggesting a calcification process. Furthermore, partially-soluble elastin downregulated smooth muscle myosin heavy chain (Myh11) gene which is a late-stage differentiation marker. This latter point, in turn, suggests that SMC may be switching into a synthetic phenotype which is one feature of vascular calcification. Taken together, our approach presents a valuable tool to study ectopic calcification and associated gene expressions relevant to clinical therapeutic targets.
Collapse
|
13
|
The Effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tissue Regeneration Purposes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Dayekh K, Mequanint K. Comparative Studies of Fibrin-Based Engineered Vascular Tissues and Notch Signaling from Progenitor Cells. ACS Biomater Sci Eng 2020; 6:2696-2706. [DOI: 10.1021/acsbiomaterials.0c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Khalil Dayekh
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| |
Collapse
|