1
|
Boschi A, Iachetta G, Buonocore S, Hubarevich A, Hurtaud J, Moreddu R, Marta d’Amora, Formoso MB, Tantussi F, Dipalo M, De Angelis F. Interferometric Biosensor for High Sensitive Label-Free Recording of HiPS Cardiomyocytes Contraction in Vitro. NANO LETTERS 2024; 24:6451-6458. [PMID: 38776267 PMCID: PMC11157657 DOI: 10.1021/acs.nanolett.3c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/24/2024]
Abstract
Heart disease remains a leading cause of global mortality, underscoring the need for advanced technologies to study cardiovascular diseases and develop effective treatments. We introduce an innovative interferometric biosensor for high-sensitivity and label-free recording of human induced pluripotent stem cell (hiPSC) cardiomyocyte contraction in vitro. Using an optical cavity, our device captures interference patterns caused by the contraction-induced displacement of a thin flexible membrane. First, we demonstrate the capability to quantify spontaneous contractions and discriminate between contraction and relaxation phases. We calculate a contraction-induced vertical membrane displacement close to 40 nm, which implies a traction stress of 34 ± 4 mN/mm2. Finally, we investigate the effects of a drug compound on contractility amplitude, revealing a significant reduction in contractile forces. The label-free and high-throughput nature of our biosensor may enhance drug screening processes and drug development for cardiac treatments. Our interferometric biosensor offers a novel approach for noninvasive and real-time assessment of cardiomyocyte contraction.
Collapse
Affiliation(s)
- Alessio Boschi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Bioengineering, University of Genoa, 16126 Genoa, Italy
| | - Giuseppina Iachetta
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Salvatore Buonocore
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Julien Hurtaud
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Rosalia Moreddu
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Marta d’Amora
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Biology, University of Pisa, 56127 Pisa, Italy
| | - Maria Blanco Formoso
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Center
for Research in Nanomaterials and Biomedicine, University of Vigo, 36310 Vigo, Spain
| | - Francesco Tantussi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Michele Dipalo
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Francesco De Angelis
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
2
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Slotvitsky M, Berezhnoy A, Scherbina S, Rimskaya B, Tsvelaya V, Balashov V, Efimov AE, Agapov I, Agladze K. Polymer Kernels as Compact Carriers for Suspended Cardiomyocytes. MICROMACHINES 2022; 14:51. [PMID: 36677111 PMCID: PMC9865253 DOI: 10.3390/mi14010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells. In this article, we documented the possibility of influencing these processes using polymer kernels: biocompatible fiber fragments of subcellular size that can be adsorbed to a cell, thereby creating the minimum necessary adhesion foci to shape the cell and provide support for the organization of the cytoskeleton and the contractile apparatus prior to adhesion to the recipient tissue. Using optical excitation markers, the restoration of the excitability of cardiomyocytes in suspension upon adsorption of polymer kernels was shown. It increased the likelihood of the formation of a stable electrophysiological coupling in vitro. The obtained results may be considered as a proof of concept that the stochastic engraftment process of injected suspension cells can be controlled by smart biomaterials.
Collapse
Affiliation(s)
- Mikhail Slotvitsky
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Andrey Berezhnoy
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Serafima Scherbina
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Beatrisa Rimskaya
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Valerya Tsvelaya
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| | - Victor Balashov
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
| | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya St., 1, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya St., 1, 123182 Moscow, Russia
| | - Konstantin Agladze
- Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Schepkina St. 61/2, 129110 Moscow, Russia
| |
Collapse
|
4
|
Podgurskaya AD, Slotvitsky MM, Tsvelaya VA, Frolova SR, Romanova SG, Balashov VA, Agladze KI. Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2021; 11:2336. [PMID: 33504826 PMCID: PMC7841168 DOI: 10.1038/s41598-020-79085-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclophosphamide (CP) is an anticancer drug, an alkylating agent. Cardiotoxicity of CP is associated with one of its metabolites, acrolein, and clinical cardiotoxicity manifestations are described for cases of taking CP in high doses. Nevertheless, modern arrhythmogenicity prediction assays in vitro include evaluation of beat rhythm and rate as well as suppression of cardiac late markers after acute exposure to CP, but not its metabolites. The mechanism of CP side effects when taken at low doses (i.e., < 100 mg/kg), especially at the cellular level, remains unclear. In this study conduction properties and cytoskeleton structure of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from a healthy donor under CP were evaluated. Arrhythmogenicity testing including characterization of 3 values: conduction velocity, maximum capture rate (MCR) measurements and number of occasions of re-entry on a standard linear obstacle was conducted and revealed MCR decrease of 25% ± 7% under CP. Also, conductivity area reduced by 34 ± 15%. No effect of CP on voltage-gated ion channels was found. Conduction changes (MCR and conductivity area decrease) are caused by exposure time-dependent alpha-actinin disruption detected both in hiPSC-CMs and neonatal ventricular cardiomyocytes in vitro. Deviation from the external stimulus frequency and appearance of non-conductive areas in cardiac tissue under CP is potentially arrhythmogenic and could develop arrhythmic effects in vivo.
Collapse
Affiliation(s)
- A D Podgurskaya
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - M M Slotvitsky
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - V A Tsvelaya
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - S R Frolova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - S G Romanova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - V A Balashov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - K I Agladze
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russian Federation.
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, Moscow, 129110, Russian Federation.
| |
Collapse
|