1
|
Chew YM, Cross RA. Structural switching of tubulin in the microtubule lattice. Biochem Soc Trans 2025; 53:BST20240360. [PMID: 39910801 DOI: 10.1042/bst20240360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Microtubule (MT) dynamic instability, a cycle of growth, catastrophe, shrinkage and rescue, is driven by the switching of tubulin between two structural states, one stabilised by GTP and the other by GDP. Recent work has uncovered the ancient origins of this structural switch and revealed further fundamental elements of microtubule dynamic instability, whereby switching can be brought about by a range of allosteric effectors, propagate deep within the lattice of assembled MTs, and profoundly affect MT function. Here, we review evidence for structural switching within the MT lattice and discuss current ideas about its mechanisms.
Collapse
Affiliation(s)
- Yean-Ming Chew
- Centre for Mechanochemical Cell Biology, University of Warwick, Warwick Medical School, Coventry CV4 7LA, U.K
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, University of Warwick, Warwick Medical School, Coventry CV4 7LA, U.K
| |
Collapse
|
2
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Igaev M, Grubmüller H. Bending-torsional elasticity and energetics of the plus-end microtubule tip. Proc Natl Acad Sci U S A 2022; 119:e2115516119. [PMID: 35302883 PMCID: PMC8944587 DOI: 10.1073/pnas.2115516119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe mechanochemical basis of microtubule growth, which is essential for the normal function and division of eukaryotic cells, has remained elusive and controversial, despite extensive work. In particular, recent findings have created the paradox that the microtubule plus-end tips look very similar during both growing and shrinking phases, thereby challenging the traditional textbook picture. Our large-scale atomistic simulations resolve this paradox and explain microtubule growth and shrinkage dynamics as a process governed by energy barriers between protofilament conformations, the heights of which are in turn fine-tuned by different nucleotide states, thus implementing an information-driven Brownian ratchet.
Collapse
Affiliation(s)
- Maxim Igaev
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions. Nat Commun 2021; 12:3799. [PMID: 34145230 PMCID: PMC8213705 DOI: 10.1038/s41467-021-23523-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
The cytoskeleton determines cell mechanics and lies at the heart of important cellular functions. Growing evidence suggests that the manifold tasks of the cytoskeleton rely on the interactions between its filamentous components-actin filaments, intermediate filaments, and microtubules. However, the nature of these interactions and their impact on cytoskeletal dynamics are largely unknown. Here, we show in a reconstituted in vitro system that vimentin intermediate filaments stabilize microtubules against depolymerization and support microtubule rescue. To understand these stabilizing effects, we directly measure the interaction forces between individual microtubules and vimentin filaments. Combined with numerical simulations, our observations provide detailed insight into the physical nature of the interactions and how they affect microtubule dynamics. Thus, we describe an additional, direct mechanism by which cells establish the fundamental cross talk of cytoskeletal components alongside linker proteins. Moreover, we suggest a strategy to estimate the binding energy of tubulin dimers within the microtubule lattice.
Collapse
|