1
|
Dimbath ED, Morino C, Middleton S, Kait J, Ortiz-Paparoni M, Slotkin TA, Luck JF, Bass CR'D. Cyclic Mechanism Affects Lumbar Spine Creep Response. Ann Biomed Eng 2024:10.1007/s10439-024-03595-w. [PMID: 39098978 DOI: 10.1007/s10439-024-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE This study aims to explore how cyclic loading influences creep response in the lumbar spine under combined flexion-compression loading. METHODS Ten porcine functional spinal units (FSUs) were mechanically tested in cyclic or static combined flexion-compression loading. Creep response between loading regimes was compared using strain-time histories and linear regression. High-resolution computed tomography (µCT) visualized damage to FSUs. Statistical methods, ANCOVA and ANOVA, assessed differences in behavior between loading regimes. RESULTS Cyclic and static loading regimes exhibited distinct creep response patterns and biphasic response. ANCOVA and ANOVA analyses revealed significant differences in slopes of creep behavior in both linear phases. Cyclic tests consistently showed endplate fractures in µCT imaging. CONCLUSION The study reveals statistically significant differences in creep response between cyclic and static loading regimes in porcine lumbar spinal units under combined flexion-compression loading. The observed biphasic behavior suggests distinct phases of tissue response, indicating potential shifts in load transfer mechanisms. Endplate fractures in cyclic tests suggest increased injury risk compared to static loading. These findings underscore the importance of considering loading conditions in computational models and designing preventive measures for occupations involving repetitive spinal loading.
Collapse
Affiliation(s)
- Elizabeth D Dimbath
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA.
| | - Concetta Morino
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Shea Middleton
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA
| | - Maria Ortiz-Paparoni
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason F Luck
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA
| | - Cameron R 'Dale' Bass
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg, Box 90281, Durham, NC, 27708, USA
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Li ZL, Lu Q, Honiball JR, Wan SHT, Yeung KWK, Cheung KMC. Mechanical characterization and design of biomaterials for nucleus pulposus replacement and regeneration. J Biomed Mater Res A 2023; 111:1888-1902. [PMID: 37555381 DOI: 10.1002/jbm.a.37593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
Biomaterials for nucleus pulposus (NP) replacement and regeneration have great potential to restore normal biomechanics in degenerated intervertebral discs following nucleotomy. Mechanical characterizations are essential for assessing the efficacy of biomaterial implants for clinical applications. While traditional compression tests are crucial to quantify various modulus values, relaxation behaviors and fatigue resistance, rheological measurements should also be conducted to investigate the viscoelastic properties, injectability, and overall stability upon deformation. To recapitulate the physiological in vivo environment, the use of spinal models is necessary to evaluate the risk of implant extrusion and the restoration of biomechanics under different loading conditions. When designing devices for NP replacement, injectable materials are ideal to fully fill the nucleus cavity and prevent implant migration. In addition to achieving biocompatibility and desirable mechanical characteristics, biomaterial implants should be optimized to avoid implant extrusion or re-herniation post-operatively. This review discusses the most commonly used testing protocols for assessing mechanical properties of biomaterial implants and serves as reference material for enabling researchers to characterize NP implants through a unified approach whereby newly developed biomaterials may be compared and contrasted to existing devices.
Collapse
Affiliation(s)
- Zhuoqi Lucas Li
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Qiuji Lu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - John Robert Honiball
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Sandra Hiu-Tung Wan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Kenneth Man-Chee Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Combination of ultra-purified stem cells with an in situ-forming bioresorbable gel enhances intervertebral disc regeneration. EBioMedicine 2022; 76:103845. [PMID: 35085848 PMCID: PMC8801983 DOI: 10.1016/j.ebiom.2022.103845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Background Lumbar intervertebral disc (IVD) herniations are associated with significant disability. Discectomy is the conventional treatment option for IVD herniations but causes a defect in the IVD, which has low self-repair ability, thereby representing a risk of further IVD degeneration. An acellular, bioresorbable, and good manufacturing practice (GMP)-compliant in situ-forming gel, which corrects discectomy-associated IVD defects and prevents further IVD degeneration had been developed. However, this acellular matrix-based strategy has certain limitations, particularly in elderly patients, whose tissues have low self-repair ability. The aim of this study was to investigate the therapeutic efficacy of using a combination of newly-developed, ultra-purified, GMP-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs) and the gel for IVD regeneration after discectomy in a sheep model of severe IVD degeneration. Methods RECs and nucleus pulposus cells (NPCs) were co-cultured in the gel. In addition, RECs combined with the gel were implanted into IVDs following discectomy in sheep with degenerated IVDs. Findings Gene expression of NPC markers, growth factors, and extracellular matrix increased significantly in the co-culture compared to that in each mono-culture. The REC and gel combination enhanced IVD regeneration after discectomy (up to 24 weeks) in the severe IVD degeneration sheep model. Interpretation These findings demonstrate the translational potential of the combination of RECs with an in situ-forming gel for the treatment of herniations in degenerative human IVDs. Funding Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
|