1
|
Kim J, Zhang K, Canton G, Balu N, Meyer K, Saber R, Paydarfar D, Yuan C, Sacks MS. In Vivo Deformation of the Human Basilar Artery. Ann Biomed Eng 2025; 53:83-98. [PMID: 39240472 DOI: 10.1007/s10439-024-03605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
An estimated 6.8 million people in the United States have an unruptured intracranial aneurysms, with approximately 30,000 people suffering from intracranial aneurysms rupture each year. Despite the development of population-based scores to evaluate the risk of rupture, retrospective analyses have suggested the limited usage of these scores in guiding clinical decision-making. With recent advancements in imaging technologies, artery wall motion has emerged as a promising biomarker for the general study of neurovascular mechanics and in assessing the risk of intracranial aneurysms. However, measuring arterial wall deformations in vivo itself poses several challenges, including how to image local wall motion and deriving the anisotropic wall strains over the cardiac cycle. To overcome these difficulties, we first developed a novel in vivo MRI-based imaging method to acquire cardiac gated images of the human basilar artery (BA) over the cardiac cycle. Next, complete BA endoluminal surfaces from each frame were segmented, producing high-resolution point clouds of the endoluminal surfaces. From these point clouds we developed a novel B-spline-based surface representation, then exploited the local support nature of B-splines to determine the local endoluminal surface strains. Results indicated distinct regional and temporal variations in BA wall deformation, highlighting the heterogeneous nature BA function. These included large circumferential strains (up to ∼ 20 % ), and small longitudinal strains, which were often contractile and out of phase with the circumferential strains patterns. Of particular interest was the temporal phase lag in the maximum circumferential perimeter length, which indicated that the BA deforms asynchronously over the cardiac cycle. In summary, the proposed method enabled local deformation analysis, allowing for the successful reproduction of local features of the BA, such as regional principal stretches, areal changes, and pulsatile motion. Integrating the proposed method into existing population-based scores has the potential to improve our understanding of mechanical properties of human BA and enhance clinical decision-making.
Collapse
Affiliation(s)
- Jaemin Kim
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kaiyu Zhang
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Gador Canton
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth Meyer
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Reza Saber
- Department of Neurology, Dell School of Medicine, University of Texas, Austin, TX, USA
| | - David Paydarfar
- Department of Neurology, Dell School of Medicine, University of Texas, Austin, TX, USA
| | - Chun Yuan
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Laurence DW, Wang S, Xiao R, Qian J, Mir A, Burkhart HM, Holzapfel GA, Lee CH. An investigation of how specimen dimensions affect biaxial mechanical characterizations with CellScale BioTester and constitutive modeling of porcine tricuspid valve leaflets. J Biomech 2023; 160:111829. [PMID: 37826955 PMCID: PMC10995110 DOI: 10.1016/j.jbiomech.2023.111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Biaxial mechanical characterizations are the accepted approach to determine the mechanical response of many biological soft tissues. Although several computational and experimental studies have examined how experimental factors (e.g., clamped vs. suture mounting) affect the acquired tissue mechanical behavior, little is known about the role of specimen dimensions in data acquisition and the subsequent modeling. In this study, we combined our established mechanical characterization framework with an iterative size-reduction protocol to test the hypothesis that specimen dimensions affect the observed mechanical behavior of biaxial characterizations. Our findings indicated that there were non-significant differences in the peak equibiaxial stretches of tricuspid valve leaflets across four specimen dimensions ranging from 4.5×4.5mm to 9 × 9mm. Further analyses revealed that there were significant differences in the low-tensile modulus of the circumferential tissue direction. These differences resulted in significantly different constitutive model parameters for the Tong-Fung model between different specimen dimensions of the posterior and septal leaflets. Overall, our findings demonstrate that specimen dimensions play an important role in experimental characterizations, but not necessarily in constitutive modeling of soft tissue mechanical behavior during biaxial testing with the commercial CellScale BioTester.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, USA
| | - Shuodao Wang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, USA
| | - Rui Xiao
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Arshid Mir
- Department of Pediatrics, University of Oklahoma Health Sciences Center, USA
| | - Harold M Burkhart
- Department of Surgery, University of Oklahoma Health Sciences Center, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, USA; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, USA; Department of Bioengineering, The University of California, Riverside, USA.
| |
Collapse
|
3
|
Laurence DW, Ross CJ, Hsu MC, Mir A, Burkhart HM, Holzapfel GA, Lee CH. Benchtop characterization of the tricuspid valve leaflet pre-strains. Acta Biomater 2022; 152:321-334. [PMID: 36041649 PMCID: PMC11974611 DOI: 10.1016/j.actbio.2022.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
The pre-strains of biological soft tissues are important when relating their in vitro and in vivo mechanical behaviors. In this study, we present the first-of-its-kind experimental characterization of the tricuspid valve leaflet pre-strains. We use 3D photogrammetry and the reproducing kernel method to calculate the pre-strains within the central 10×10 mm region of the tricuspid valve leaflets from n=8 porcine hearts. In agreement with previous pre-strain studies for heart valve leaflets, our results show that all the three tricuspid valve leaflets shrink after being explanted from the ex vivo heart. These calculated strains are leaflet-specific and the septal leaflet experiences the most compressive changes. Furthermore, the strains observed after dissection of the central 10×10 mm region of the leaflet are smaller than when the valve is explanted, suggesting that our computed pre-strains are mainly due to the release of in situ annulus and chordae connections. The leaflets are then mounted on a biaxial testing device and preconditioned using force-controlled equibiaxial loading. We show that the employed preconditioning protocol does not 100% restore the leaflet pre-strains as removed during tissue dissection, and future studies are warranted to explore alternative preconditioning methods. Finally, we compare the calculated biomechanically oriented metrics considering five stress-free reference configurations. Interestingly, the radial tissue stretches and material anisotropies are significantly smaller compared to the post-preconditioning configuration. Extensions of this work can further explore the role of this unique leaflet-specific leaflet pre-strains on in vivo valve behavior via high-fidelity in-silico models. STATEMENT OF SIGNIFICANCE: This study provides a first of its kind benchtop characterization of tricuspid valve leaflet pre-strains. We used 3D photogrammetry to reconstruct the central region of the tricuspid valve leaflets in three configurations. The associated configurational changes revealed compressive, leaflet-specific strains after dissection of the valve from its in situ environment. Interestingly, we found that biaxial preconditioning did not restore the measured pre-strains of the leaflets. Depending on the selection of the stress-free reference configuration, this led to substantial differences in the leaflet mechanics. Our findings and methodology are crucial when it comes to relating in vitro mechanical behaviors to valve function in vivo. Future studies can integrate our quantified pre-strains into in-silico simulations to get more realistic predictions about the valve function.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Colton J Ross
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Ming-Chen Hsu
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Eng., Iowa State University, USA
| | - Arshid Mir
- Department of Pediatrics, University of Oklahoma Health Sciences Center, USA
| | - Harold M Burkhart
- Department of Surgery, University of Oklahoma Health Sciences Center, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Norway
| | - Chung-Hao Lee
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA.
| |
Collapse
|
4
|
Fitzpatrick DJ, Pham K, Ross CJ, Hudson LT, Laurence DW, Yu Y, Lee CH. Ex vivo experimental characterizations for understanding the interrelationship between tissue mechanics and collagen microstructure of porcine mitral valve leaflets. J Mech Behav Biomed Mater 2022; 134:105401. [PMID: 35944442 PMCID: PMC11980843 DOI: 10.1016/j.jmbbm.2022.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Unidirectional blood flow in the left side of the heart is regulated by the mitral valve. To better understand the mitral valve function, researchers have examined the structural and mechanical properties of the mitral valve leaflets; however, limitations of the previous studies include the use of mechanics- and structure-altering tissue modifications (e.g., optical clearing) that limit the ability to quantify the unique load-dependent reorientation and realignment of the collagen fibers as well as their interrelation with the valve tissue mechanics. Herein, we aimed to circumvent these limitations by utilizing an integrated polarized-light imaging and biaxial testing system for understanding the mechanics-microstructure interrelationship for porcine mitral valve leaflets. We further performed constitutive modeling and evaluated the accuracy of the affine fiber kinematics theory. From the tissue mechanics perspective, the posterior leaflet was more extensible in the radial direction than the anterior leaflet (14.2% difference in radial tissue stretch), while exhibiting smaller collagen and elastin moduli based on the determined constitutive model parameters. From the collagen microstructure's standpoint, the posterior leaflet had smaller increases in optical anisotropy (closely related to the degree of fiber alignment) than the anterior leaflet (32.8±7.7% vs. 50.0±19.7%). Further, the leaflets were found to possess two distinct fiber families - one family oriented along the circumferential tissue direction, and another more disperse family with a 30°-40° offset from the first fiber family. Finally, affine fiber kinematics consistently underpredicted the collagen fiber reorientations Overall, this study improved our understanding of the mitral valve leaflets that is essential for facilitating tissue-emulated valve replacement and cardiac valve modeling frameworks.
Collapse
Affiliation(s)
- Daniel J Fitzpatrick
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Kevin Pham
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Colton J Ross
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Luke T Hudson
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Devin W Laurence
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Yue Yu
- Department of Mathematics, Lehigh University, USA
| | - Chung-Hao Lee
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA.
| |
Collapse
|