1
|
Zhou Z, Fahlstedt M, Li X, Kleiven S. Peaks and Distributions of White Matter Tract-related Strains in Bicycle Helmeted Impacts: Implication for Helmet Ranking and Optimization. Ann Biomed Eng 2025; 53:699-717. [PMID: 39636379 PMCID: PMC11836146 DOI: 10.1007/s10439-024-03653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) in cyclists is a growing public health problem, with helmets being the major protection gear. Finite element head models have been increasingly used to engineer safer helmets often by mitigating brain strain peaks. However, how different helmets alter the spatial distribution of brain strain remains largely unknown. Besides, existing research primarily used maximum principal strain (MPS) as the injury parameter, while white matter fiber tract-related strains, increasingly recognized as effective predictors for TBI, have rarely been used for helmet evaluation. To address these research gaps, we used an anatomically detailed head model with embedded fiber tracts to simulate fifty-one helmeted impacts, encompassing seventeen bicycle helmets under three impact locations. We assessed the helmet performance based on four tract-related strains characterizing the normal and shear strain oriented along and perpendicular to the fiber tract, as well as the prevalently used MPS. Our results showed that both the helmet model and impact location affected the strain peaks. Interestingly, we noted that different helmets did not alter strain distribution, except for one helmet under one specific impact location. Moreover, our analyses revealed that helmet ranking outcome based on strain peaks was affected by the choice of injury metrics (Kendall's Tau coefficient: 0.58-0.93). Significant correlations were noted between tract-related strains and angular motion-based injury metrics. This study provided new insights into computational brain biomechanics and highlighted the helmet ranking outcome was dependent on the choice of injury metrics. Our results also hinted that the performance of helmets could be augmented by mitigating the strain peak and optimizing the strain distribution with accounting the selective vulnerability of brain subregions and more research was needed to develop region-specific injury criteria.
Collapse
Affiliation(s)
- Zhou Zhou
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden.
| | | | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| |
Collapse
|
2
|
Baker CE, Yu X, Lovell B, Tan R, Patel S, Ghajari M. How Well Do Popular Bicycle Helmets Protect from Different Types of Head Injury? Ann Biomed Eng 2024; 52:3326-3364. [PMID: 39294466 PMCID: PMC11561050 DOI: 10.1007/s10439-024-03589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
Bicycle helmets are designed to protect against skull fractures and associated focal brain injuries, driven by helmet standards. Another type of head injury seen in injured cyclists is diffuse brain injuries, but little is known about the protection provided by bicycle helmets against these injuries. Here, we examine the performance of modern bicycle helmets in preventing diffuse injuries and skull fractures under impact conditions that represent a range of real-world incidents. We also investigate the effects of helmet technology, price, and mass on protection against these pathologies. 30 most popular helmets among UK cyclists were purchased within 9.99-135.00 GBP price range. Helmets were tested under oblique impacts onto a 45° anvil at 6.5 m/s impact speed and four locations, front, rear, side, and front-side. A new headform, which better represents the average human head's mass, moments of inertia and coefficient of friction than any other available headforms, was used. We determined peak linear acceleration (PLA), peak rotational acceleration (PRA), peak rotational velocity (PRV), and BrIC. We also determined the risk of skull fractures based on PLA (linear risk), risk of diffuse brain injuries based on BrIC (rotational risk), and their mean (overall risk). Our results show large variation in head kinematics: PLA (80-213 g), PRV (8.5-29.9 rad/s), PRA (1.6-9.7 krad/s2), and BrIC (0.17-0.65). The overall risk varied considerably with a 2.25 ratio between the least and most protective helmet. This ratio was 1.76 for the linear and 4.21 for the rotational risk. Nine best performing helmets were equipped with the rotation management technology MIPS, but not all helmets equipped with MIPS were among the best performing helmets. Our comparison of three tested helmets which have MIPS and no-MIPS versions showed that MIPS reduced rotational kinematics, but not linear kinematics. We found no significant effect of helmet price on exposure-adjusted injury risks. We found that larger helmet mass was associated with higher linear risk. This study highlights the need for a holistic approach, including both rotational and linear head injury metrics and risks, in helmet design and testing. It also highlights the need for providing information about helmet safety to consumers to help them make an informed choice.
Collapse
Affiliation(s)
- C E Baker
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - X Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - B Lovell
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| | - R Tan
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| | - S Patel
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| | - M Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Yu X, Baker CE, Ghajari M. Head Impact Location, Speed and Angle from Falls and Trips in the Workplace. Ann Biomed Eng 2024; 52:2687-2702. [PMID: 36745294 PMCID: PMC11402836 DOI: 10.1007/s10439-023-03146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a common injury in the workplace. Trips and falls are the leading causes of TBI in the workplace. However, industrial safety helmets are not designed for protecting the head under these impact conditions. Instead, they are designed to pass the regulatory standards which test head protection against falling heavy and sharp objects. This is likely to be due to the limited understanding of head impact conditions from trips and falls in workplace. In this study, we used validated human multi-body models to predict the head impact location, speed and angle (measured from the ground) during trips, forward falls and backward falls. We studied the effects of worker size, initial posture, walking speed, width and height of the tripping barrier, bracing and falling height on the head impact conditions. Overall, we performed 1692 simulations. The head impact speed was over two folds larger in falls than trips, with backward falls producing highest impact speeds. However, the trips produced impacts with smaller impact angles to the ground. Increasing the walking speed increased the head impact speed but bracing reduced it. We found that 41% of backward falls and 19% of trips/forward falls produced head impacts located outside the region of helmet coverage. Next, we grouped all the data into three sub-groups based on the head impact angle: [0°, 30°], (30°, 60°] and (60°, 90°] and excluded groups with small number of cases. We found that most trips and forward falls lead to impact angles within the (30°, 60°] and (60°, 90°] groups while all backward falls produced impact angles within (60°, 90°] group. We therefore determined five representative head impact conditions from these groups by selecting the 75th percentile speed, mean value of angle intervals and median impact location (determined by elevation and azimuth angles) of each group. This led to two representative head impact conditions for trips: 2.7 m/s at 45° and 3.9 m/s at 75°, two for forward falls: 3.8 m/s at 45° and 5.5 m/s at 75° and one for backward falls: 9.4 m/s at 75°. These impact conditions can be used to improve industrial helmet standards.
Collapse
Affiliation(s)
- Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK.
| | - Claire E Baker
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Stitt D, Kabaliuk N, Alexander K, Draper N. Potential of Soft-Shelled Rugby Headgear to Lower Regional Brain Strain Metrics During Standard Drop Tests. SPORTS MEDICINE - OPEN 2024; 10:102. [PMID: 39333426 PMCID: PMC11436562 DOI: 10.1186/s40798-024-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/24/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The growing concern for player safety in rugby has led to an increased focus on head impacts. Previous laboratory studies have shown that rugby headgear significantly reduces peak linear and rotational accelerations compared to no headgear. However, these metrics may have limited relevance in assessing the effectiveness of headgear in preventing strain-based brain injuries like concussions. This study used an instantaneous deep-learning brain injury model to quantify regional brain strain mitigation of rugby headgear during drop tests. Tests were conducted on flat and angled impact surfaces across different heights, using a Hybrid III headform and neck. RESULTS Headgear presence generally reduced the peak rotational velocities, with some headgear outperforming others. However, the effect on peak regional brain strains was less consistent. Of the 5 headgear tested, only the newer models that use open cell foams at densities above 45 kg/m3 consistently reduced the peak strain in the cerebrum, corpus callosum, and brainstem. The 3 conventional headgear that use closed cell foams at or below 45 kg/m3 showed no consistent reduction in the peak strain in the cerebrum, corpus callosum, and brainstem. CONCLUSIONS The presence of rugby headgear may be able to reduce the severity of head impact exposure during rugby. However, to understand how these findings relate to brain strain mitigation in the field, further investigation into the relationship between the impact conditions in this study and those encountered during actual gameplay is necessary.
Collapse
Affiliation(s)
- Danyon Stitt
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
- University of Canterbury, Sports Health and Rehabilitation Research Center (SHARRC), Christchurch, 8041, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand.
- University of Canterbury, Sports Health and Rehabilitation Research Center (SHARRC), Christchurch, 8041, New Zealand.
| | - Keith Alexander
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Nick Draper
- University of Canterbury, Sports Health and Rehabilitation Research Center (SHARRC), Christchurch, 8041, New Zealand
- Faculty of Health, University of Canterbury, Christchurch, 8041, New Zealand
| |
Collapse
|
5
|
Yu X, Singh G, Kaur A, Ghajari M. An Assessment of Sikh Turban's Head Protection in Bicycle Incident Scenarios. Ann Biomed Eng 2024; 52:946-957. [PMID: 38305930 PMCID: PMC10940469 DOI: 10.1007/s10439-023-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Due to religious tenets, Sikh population wear turbans and are exempted from wearing helmets in several countries. However, the extent of protection provided by turbans against head injuries during head impacts remains untested. One aim of this study was to provide the first-series data of turbans' protective performance under impact conditions that are representative of real-world bicycle incidents and compare it with the performance of bicycle helmets. Another aim was to suggest potential ways for improving turban's protective performance. We tested five different turbans, distinguished by two wrapping styles and two fabric materials with a size variation in one of the styles. A Hybrid III headform fitted with the turban was dropped onto a 45 degrees anvil at 6.3 m/s and head accelerations were measured. We found large difference in the performance of different turbans, with up to 59% difference in peak translational acceleration, 85% in peak rotational acceleration, and 45% in peak rotational velocity between the best and worst performing turbans. For the same turban, impact on the left and right sides of the head produced very different head kinematics, showing the effects of turban layering. Compared to unprotected head impacts, turbans considerably reduce head injury metrics. However, turbans produced higher values of peak linear and rotational accelerations in front and left impacts than bicycle helmets, except from one turban which produced lower peak head kinematics values in left impacts. In addition, turbans produced peak rotational velocities comparable with bicycle helmets, except from one turban which produced higher values. The impact locations tested here were covered with thick layers of turbans and they were impacted against flat anvils. Turbans may not provide much protection if impacts occur at regions covered with limited amount of fabric or if the impact is against non-flat anvils, which remain untested. Our analysis shows that turbans can be easily compressed and bottom out creating spikes in the headform's translational acceleration. In addition, the high friction between the turban and anvil surface leads to higher tangential force generating more rotational motion. Hence, in addition to improving the coverage of the head, particularly in the crown and rear locations, we propose two directions for turban improvement: (i) adding deformable materials within the turban layers to increase the impact duration and reduce the risk of bottoming out; (ii) reducing the friction between turban layers to reduce the transmission of rotational motion to the head. Overall, the study assessed Turbans' protection in cyclist head collisions, with a vision that the results of this study can guide further necessary improvements for advanced head protection for the Sikh community.
Collapse
Affiliation(s)
- Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Gurpreet Singh
- Department of Materials, Imperial College London, London, UK.
- Sikh Scientists Network, London, UK.
| | - Amritvir Kaur
- Sikh Scientists Network, London, UK
- Dr Kaur Projects Ltd, London, UK
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK
| |
Collapse
|
6
|
Jones CM, Austin K, Augustus SN, Nicholas KJ, Yu X, Baker C, Chan EYK, Loosemore M, Ghajari M. An Instrumented Mouthguard for Real-Time Measurement of Head Kinematics under a Large Range of Sport Specific Accelerations. SENSORS (BASEL, SWITZERLAND) 2023; 23:7068. [PMID: 37631606 PMCID: PMC10457941 DOI: 10.3390/s23167068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Head impacts in sports can produce brain injuries. The accurate quantification of head kinematics through instrumented mouthguards (iMG) can help identify underlying brain motion during injurious impacts. The aim of the current study is to assess the validity of an iMG across a large range of linear and rotational accelerations to allow for on-field head impact monitoring. METHODS Drop tests of an instrumented helmeted anthropometric testing device (ATD) were performed across a range of impact magnitudes and locations, with iMG measures collected concurrently. ATD and iMG kinematics were also fed forward to high-fidelity brain models to predict maximal principal strain. RESULTS The impacts produced a wide range of head kinematics (16-171 g, 1330-10,164 rad/s2 and 11.3-41.5 rad/s) and durations (6-18 ms), representing impacts in rugby and boxing. Comparison of the peak values across ATD and iMG indicated high levels of agreement, with a total concordance correlation coefficient of 0.97 for peak impact kinematics and 0.97 for predicted brain strain. We also found good agreement between iMG and ATD measured time-series kinematic data, with the highest normalized root mean squared error for rotational velocity (5.47 ± 2.61%) and the lowest for rotational acceleration (1.24 ± 0.86%). Our results confirm that the iMG can reliably measure laboratory-based head kinematics under a large range of accelerations and is suitable for future on-field validity assessments.
Collapse
Affiliation(s)
- Chris M. Jones
- Sports and Wellbeing Analytics, Swansea SA7 0AJ, UK; (K.A.)
- Institute of Sport and Exercise Health (ISEH), Division Surgery Interventional Science, University College London, London W1T 7HA, UK
| | - Kieran Austin
- Sports and Wellbeing Analytics, Swansea SA7 0AJ, UK; (K.A.)
- Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester PO19 6PE, UK
| | - Simon N. Augustus
- Department of Applied and Human Sciences, Kingston University London, London KT1 2EE, UK
| | | | - Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Claire Baker
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Emily Yik Kwan Chan
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Mike Loosemore
- Institute of Sport and Exercise Health (ISEH), Division Surgery Interventional Science, University College London, London W1T 7HA, UK
- English Institute of Sport, Manchester M11 3BS, UK
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| |
Collapse
|
7
|
Mousavi-Shalmaei SMA, Hosseinnia M, Mohtasham-Amiri Z, Rad EH, Khodadadi-Hassankiadeh N. Helmet Use and Jaw and Tooth Injuries in Motorcyclists Admitted to a Referral Hospital. J Maxillofac Oral Surg 2023:1-6. [PMID: 37362880 PMCID: PMC10199431 DOI: 10.1007/s12663-023-01934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 06/28/2023] Open
Abstract
Background and Aim The use of helmets has been reported to reduce the incidence and severity of head injuries in motorcyclists. However, there remains a significant gap in knowledge regarding the effectiveness of helmets, especially in preventing jaw and tooth injuries. Patients and Methods In this retrospective analytical study record, all traffic accidents that occurred continuously from 2017 to 2019 in which the motorcyclists were on at least one side of the collision based on inclusion criteria. Data from injury variables in medical records were merged with data related to helmet use in the trauma registration system in Excel software. Then, the final analysis was performed with STATA software version 14 at a significance level of < 0.05. Results In total, 1807 people participated in the study, and 160 (9.37) people used helmets. The incidence rate of jaw and tooth injuries was 86 (5.04%). Logistic regression implied that the odds ratio for helmet use was 0.7, which considering the p value of 0.419, shows no significant relationship between wearing helmets and jaw and tooth injuries. Conclusion Helmets alone cannot prevent jaw and tooth injuries, and designers should design helmets that protect the head and the jaw and tooth. In prevention programs and campaigns for motorcyclists, every age, gender, job, grade group and marital status are target groups.
Collapse
Affiliation(s)
| | - Marjan Hosseinnia
- School of Pharmacy, Department of Clinical and Administrative Sciences, Notre Dame of Maryland University, Baltimore, USA
| | - Zahra Mohtasham-Amiri
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Enayatollah Homaie Rad
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | |
Collapse
|
8
|
In-Depth Bicycle Collision Reconstruction: From a Crash Helmet to Brain Injury Evaluation. Bioengineering (Basel) 2023; 10:bioengineering10030317. [PMID: 36978708 PMCID: PMC10045787 DOI: 10.3390/bioengineering10030317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a prevalent injury among cyclists experiencing head collisions. In legal cases, reliable brain injury evaluation can be difficult and controversial as mild injuries cannot be diagnosed with conventional brain imaging methods. In such cases, accident reconstruction may be used to predict the risk of TBI. However, lack of collision details can render accident reconstruction nearly impossible. Here, we introduce a reconstruction method to evaluate the brain injury in a bicycle–vehicle collision using the crash helmet alone. Following a thorough inspection of the cyclist’s helmet, we identified a severe impact, a moderate impact and several scrapes, which helped us to determine the impact conditions. We used our helmet test rig and intact helmets identical to the cyclist’s helmet to replicate the damage seen on the cyclist’s helmet involved in the real-world collision. We performed both linear and oblique impacts, measured the translational and rotational kinematics of the head and predicted the strain and the strain rate across the brain using a computational head model. Our results proved the hypothesis that the cyclist sustained a severe impact followed by a moderate impact on the road surface. The estimated head accelerations and velocity (167 g, 40.7 rad/s and 13.2 krad/s2) and the brain strain and strain rate (0.541 and 415/s) confirmed that the severe impact was large enough to produce mild to moderate TBI. The method introduced in this study can guide future accident reconstructions, allowing for the evaluation of TBI using the crash helmet only.
Collapse
|
9
|
Ganga A, Kim EJ, Tang OY, Feler JR, Sastry RA, Anderson MN, Keith SE, Fridley JS, Gokaslan ZL, Cielo DJ, Toms SA, Sullivan PZ. The burden of unhelmeted motorcycle injury: A nationwide scoring-based analysis of helmet safety legislation. Injury 2023; 54:848-856. [PMID: 36646531 DOI: 10.1016/j.injury.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Motorcycle collisions comprise a large portion of motor vehicle injuries and fatalities with over 80,000 injuries and 5,500 fatalities per year in the United States. Unhelmeted riders have poor medical outcomes and generate billions in costs. Despite helmet use having been shown to lower the risk of neurological injury and death, helmet compliance is not universal, and legislation concerning helmet use also varies widely across the United States. METHODS In this study, we systematically reviewed helmet-related statutes from all US jurisdictions. We evaluated the stringency of these statutes using a legislative scoring system termed the Helmet Safety Score (HSS) ranging from 0-7 points, with higher scores denoting more stringent statutes. Regression modeling was used to predict unhelmeted mortality using our safety scores. RESULTS The mean score across all jurisdictions was 4.73. We found jurisdictions with higher HSS's generally had lower percentages of unhelmeted fatalities in terms of total fatalities as well as per 100,000 people and 100,000 registered motorcycles. In contrast, some lower-scoring jurisdictions had over 100 times more unhelmeted fatalities than higher-scoring jurisdictions. Our HSS significantly predicted unhelmeted motorcycle fatalities per 100,000 people (β = -0.228 per 1-point increase, 95% CI: -0.288 to -0.169, p < .0001) and per 100,000 registered motorcycles (β = -6.17 per 1-point increase, 95% CI: -8.37 to -3.98, p < .0001) in each state. Aspects of our score concerning helmet exemptions for riders and motorcycle-type vehicles independently predicted higher fatalities (p < .0001). Higher safety scores predicted lower unhelmeted fatalities. CONCLUSION Stringent helmet laws may be an effective mechanism for decreasing unhelmeted mortality. Therefore, universal helmet laws may be one such mechanism to decrease motorcycle-related neurological injury and fatality burden. In states with existing helmet laws, elimination of exemptions for certain riders and motorcycle-type vehicles may also decrease fatalities.
Collapse
Affiliation(s)
- Arjun Ganga
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Eric J Kim
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Oliver Y Tang
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Joshua R Feler
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Rahul A Sastry
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Matthew N Anderson
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Sharonda E Keith
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Jared S Fridley
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Ziya L Gokaslan
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Deus J Cielo
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Steven A Toms
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States
| | - Patricia Zadnik Sullivan
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States; Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States.
| |
Collapse
|
10
|
Yu X, Halldin P, Ghajari M. Oblique impact responses of Hybrid III and a new headform with more biofidelic coefficient of friction and moments of inertia. Front Bioeng Biotechnol 2022; 10:860435. [PMID: 36159665 PMCID: PMC9492997 DOI: 10.3389/fbioe.2022.860435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
New oblique impact methods for evaluating head injury mitigation effects of helmets are emerging, which mandate measuring both translational and rotational kinematics of the headform. These methods need headforms with biofidelic mass, moments of inertia (MoIs), and coefficient of friction (CoF). To fulfill this need, working group 11 of the European standardization head protection committee (CEN/TC158) has been working on the development of a new headform with realistic MoIs and CoF, based on recent biomechanics research on the human head. In this study, we used a version of this headform (Cellbond) to test a motorcycle helmet under the oblique impact at 8 m/s at five different locations. We also used the Hybrid III headform, which is commonly used in the helmet oblique impact. We tested whether there is a difference between the predictions of the headforms in terms of injury metrics based on head kinematics, including peak translational and rotational acceleration, peak rotational velocity, and BrIC (brain injury criterion). We also used the Imperial College finite element model of the human head to predict the strain and strain rate across the brain and tested whether there is a difference between the headforms in terms of the predicted strain and strain rate. We found that the Cellbond headform produced similar or higher peak translational accelerations depending on the impact location (−3.2% in the front-side impact to 24.3% in the rear impact). The Cellbond headform, however, produced significantly lower peak rotational acceleration (−41.8% in a rear impact to −62.7% in a side impact), peak rotational velocity (−29.5% in a side impact to −47.6% in a rear impact), and BrIC (−29% in a rear-side impact to −45.3% in a rear impact). The 90th percentile values of the maximum brain strain and strain rate were also significantly lower using this headform. Our results suggest that MoIs and CoF have significant effects on headform rotational kinematics, and consequently brain deformation, during the helmeted oblique impact. Future helmet standards and rating methods should use headforms with realistic MoIs and CoF (e.g., the Cellbond headform) to ensure more accurate representation of the head in laboratory impact tests.
Collapse
Affiliation(s)
- Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington, United Kingdom
- *Correspondence: Xiancheng Yu,
| | - Peter Halldin
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
- MIPS AB, Täby, Sweden
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington, United Kingdom
| |
Collapse
|