1
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Lian S, Loganathan S, Mayer T, Kraft P, Sayour AA, Georgevici AI, Veres G, Karck M, Szabó G, Korkmaz-Icöz S. In a rat model of bypass DuraGraft ameliorates endothelial dysfunction of arterial grafts. Sci Rep 2024; 14:15174. [PMID: 38956161 PMCID: PMC11220020 DOI: 10.1038/s41598-024-66056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Shuo Lian
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
| | - Tobias Mayer
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Patricia Kraft
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Alex Ali Sayour
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Heart and Vascular Center, Semmelweis University, Budapest, 1122, Hungary
| | - Adrian-Iustin Georgevici
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
- Department of Anesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791, Bochum, Germany
| | - Gábor Veres
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
| | - Matthias Karck
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Gábor Szabó
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
| | - Sevil Korkmaz-Icöz
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany.
| |
Collapse
|
3
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
4
|
Tran-Nguyen N, Yan AT, Fremes S, Triverio P, Jimenez-Juan L. Abnormal Wall Shear Stress Area is Correlated to Coronary Artery Bypass Graft Remodeling 1 Year After Surgery. Ann Biomed Eng 2023:10.1007/s10439-023-03167-4. [PMID: 36871052 DOI: 10.1007/s10439-023-03167-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
Coronary artery bypass graft surgery is a common intervention for coronary artery disease; however, it suffers from graft failure, and the underlying mechanisms are not fully understood. To better understand the relation between graft hemodynamics and surgical outcomes, we performed computational fluid dynamics simulations with deformable vessel walls in 10 study participants (24 bypass grafts) based on CT and 4D flow MRI one month after surgery to quantify lumen diameter, wall shear stress (WSS), and related hemodynamic measures. A second CT acquisition was performed one year after surgery to quantify lumen remodeling. Compared to venous grafts, left internal mammary artery grafts experienced lower abnormal WSS (< 1 Pa) area one month after surgery (13.8 vs. 70.1%, p = 0.001) and less inward lumen remodeling one year after surgery (- 2.4% vs. - 16.1%, p = 0.027). Abnormal WSS area one month post surgery correlated with percent change in graft lumen diameter one year post surgery (p = 0.030). This study shows for the first time prospectively a correlation between abnormal WSS area one month post surgery and graft lumen remodeling 1 year post surgery, suggesting that shear-related mechanisms may play a role in post-operative graft remodeling and might help explain differences in failure rates between arterial and venous grafts.
Collapse
Affiliation(s)
- Nhien Tran-Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Andrew T Yan
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - Stephen Fremes
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Piero Triverio
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Laura Jimenez-Juan
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|