1
|
Gellner R, Begonia MT, Wood M, Rockwell L, Geiman T, Jung C, Gellner B, MacMartin A, Manlapit S, Rowson S. Detecting and Salvaging Head Impacts with Decoupling Artifacts from Instrumented Mouthguards. Ann Biomed Eng 2025; 53:1095-1112. [PMID: 39922951 PMCID: PMC12006252 DOI: 10.1007/s10439-025-03689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
In response to growing evidence that repetitive head impact exposure and concussions can lead to long-term health consequences, many research studies are attempting to quantify the frequency and severity of head impacts incurred in various sports and occupations. The most popular apparatus for doing so is the instrumented mouthguard (iMG). While these devices hold greater promise of head kinematic accuracy than their helmet-mounted predecessors, data artifacts related to iMG decoupling still plague results. We recreated iMG decoupling artifacts in a laboratory test series using an iMG fit to a dentition mounted in a NOCSAE headform. With these data, we identified time, frequency, and time-frequency features of decoupled head impacts that we used in a machine learning classification algorithm to predict decoupling in six-degree-of-freedom iMG signals. We compared our machine learning algorithm predictions on the laboratory series and 80 video-verified field head acceleration events to several other proprietary and published methods for predicting iMG decoupling. We also present a salvaging method to remove decoupling artifacts from signals and reduce peak resultant error when decoupling is detected. Future researchers should expand these methods using on-field data to further refine and enable prediction of iMG decoupling during live volunteer use. Combining the presented machine learning model and salvaging technique with other published methods, such as infrared proximity sensing, advanced triggering thresholds, and video review, may enable researchers to identify and salvage data with decoupling artifacts that previously would have had to be discarded.
Collapse
Affiliation(s)
- Ryan Gellner
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA.
| | - Mark T Begonia
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Matthew Wood
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Lewis Rockwell
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
- Carnegie Mellon (Mechanical Engineering), Pittsburgh, PA, USA
| | - Taylor Geiman
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Caitlyn Jung
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Blake Gellner
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Allison MacMartin
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
- Wayne State University (Biomedical Engineering), Detroit, MI, USA
| | - Sophia Manlapit
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
- Wayne State University (Biomedical Engineering), Detroit, MI, USA
| | - Steve Rowson
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| |
Collapse
|
2
|
Bolger C, Mara J, Field B, Pyne DB, McKune AJ. Methods for Capturing and Quantifying Contact Events in Collision Sports. Sports (Basel) 2025; 13:102. [PMID: 40278728 PMCID: PMC12031581 DOI: 10.3390/sports13040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Technological advancements have led to widespread use of wearable devices that capture external performance metrics in team sports. Tracking systems including global positioning system (GPS) technology with inbuilt microelectromechanical systems (MEMS), instrumented mouthguards (iMGs), and video analysis provide valuable insights into the contact demands of collision sports. In collision sports, successfully "winning the contact" is positively associated with better individual and team performance, but it also comes with a high risk of injury, posing a concern for player welfare. Understanding the frequency and intensity of these contact events is important in order for coaches and practitioners to adequately prepare players for competition and can simultaneously reduce the burden on athletes. Different methods have been developed for detecting contact events, although limitations of the current methods include validity and reliability issues, varying thresholds, algorithm inconsistencies, and a lack of code- and sex-specific algorithms. In this review, we evaluate common methods for capturing contact events in team collision sports and detail a new method for assessing contact intensity through notational analysis, offering a potential alternative for capturing contact events that are currently challenging to detect through microtechnology alone.
Collapse
Affiliation(s)
- Craig Bolger
- Faculty of Health, Research Institute for Sport and Exercise, University of Canberra, Kirinari Street, Bruce, Canberra, ACT 2617, Australia; (C.B.); (J.M.); (D.B.P.)
- ACT Brumbies Rugby, University of Canberra, Building 29, University Drive, Bruce, Canberra, ACT 2617, Australia
| | - Jocelyn Mara
- Faculty of Health, Research Institute for Sport and Exercise, University of Canberra, Kirinari Street, Bruce, Canberra, ACT 2617, Australia; (C.B.); (J.M.); (D.B.P.)
| | - Byron Field
- Rugby Australia, ARU Building, Moore Park Rd & Driver Ave, Paddington, NSW 2021, Australia;
| | - David B. Pyne
- Faculty of Health, Research Institute for Sport and Exercise, University of Canberra, Kirinari Street, Bruce, Canberra, ACT 2617, Australia; (C.B.); (J.M.); (D.B.P.)
| | - Andrew J. McKune
- Faculty of Health, Research Institute for Sport and Exercise, University of Canberra, Kirinari Street, Bruce, Canberra, ACT 2617, Australia; (C.B.); (J.M.); (D.B.P.)
- School of Health Sciences, Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4041, KZN, South Africa
| |
Collapse
|
3
|
Gabler LF, Patton DA, Reynier KA, Barnett IJ, Miles AM, Dau NZ, Clugston JR, Cobian DG, Harmon KG, Kontos AP, Lynall RC, Mihalik JP, Moran RN, Terry DP, Mayer T, Solomon GS, Sills AK, Arbogast KB, Crandall JR. Distribution of position-specific head impact severities among professional and Division I collegiate American football athletes during games. BMJ Open Sport Exerc Med 2025; 11:e002365. [PMID: 40124124 PMCID: PMC11927453 DOI: 10.1136/bmjsem-2024-002365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Objective To compare the severity of head impacts between professional and Division I (D-I) collegiate football games for the purpose of improving protective equipment. Methods A total of 243 football players from the National Football League (NFL) and from D-I of the National Collegiate Athletic Association (NCAA) were equipped with instrumented mouthpieces capable of measuring six degrees-of-freedom head kinematics. Head impacts were processed using a custom algorithm and combined with game period descriptors to produce a curated dataset for analysis. Head impact severity distributions for several kinematic-based metrics were compared within position groupings between leagues. Results A total of 11 038 head impacts greater than 10 g from 1208 player-games were collected during 286 player-seasons (2019-2022). No significant differences were found between leagues in the distributions of kinematic-based metrics for all investigated position groupings (p≥0.320). The median and IQRs for peak linear acceleration for NFL and NCAA were 17.2 (9.3) g and 17.0 (8.6) g for linemen, 20.7 (13.8) g and 20.0 (13.5) g for hybrid and 21.0 (17.0) g and 20.8 (15.5) g for speed position groupings, respectively. Conclusion The absence of statistically significant differences in the distributions of head impact severity between professional and D-I collegiate football players indicates that these data can be combined for the purpose of understanding the range of loading conditions for which new protective equipment, such as position-specific helmets, should be designed. This observation underscores the potential for knowledge transfer regarding biomechanical factors affecting head loading across professional and D-I college football, highlighting crucial implications for innovation in protective equipment.
Collapse
Affiliation(s)
- Lee F Gabler
- Biomechanics Consulting & Research LLC, Charlottesville, Virginia, USA
| | - Declan A Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristen A Reynier
- Biomechanics Consulting & Research LLC, Charlottesville, Virginia, USA
| | - Ian J Barnett
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander M Miles
- Biomechanics Consulting & Research LLC, Charlottesville, Virginia, USA
| | - Nathan Z Dau
- Biomechanics Consulting & Research LLC, Charlottesville, Virginia, USA
| | - James R Clugston
- UF Student Health Care Center, Department of Community Health and Family Medicine, University of Florida, Gainesville, Florida, USA
| | - Daniel G Cobian
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kimberly G Harmon
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Anthony P Kontos
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert C Lynall
- Department of Kinesiology, University of Georgia, Athens, Georgia, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan N Moran
- Department of Health Science, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Douglas P Terry
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thom Mayer
- National Football League Players Association, Washington, District of Columbia, USA
| | - Gary S Solomon
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Health and Safety Department, National Football League, New York, New York, USA
| | - Allen K Sills
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Health and Safety Department, National Football League, New York, New York, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeff R Crandall
- Biomechanics Consulting & Research LLC, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Venkatraman J, Abrams MZ, Sherman D, Ortiz-Paparoni M, Bercaw JR, MacDonald RE, Kait J, Dimbath E, Pang D, Gray A, Luck JF, Bass CR, Bir CA. Accuracy of Instrumented Mouthguards During Direct Jaw Impacts Seen in Boxing. Ann Biomed Eng 2024; 52:3219-3227. [PMID: 39028399 DOI: 10.1007/s10439-024-03586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Measuring head kinematics data is important to understand and develop methods and standards to mitigate head injuries in contact sports. Instrumented mouthguards (iMGs) have been developed to address coupling issues with previous sensors. Although validated with anthropomorphic test devices (ATDs), there is limited post-mortem human subjects (PMHS) data which provides more accurate soft tissue responses. This study evaluated two iMGs (Prevent Biometrics (PRE) and Diversified Technical Systems (DTS) in response to direct jaw impacts. METHODS Three unembalmed male cadaver heads were properly fitted with two different boil-and-bite iMGs and impacted with hook (4 m/s) and uppercut (3 m/s) punches. A reference sensor (REF) was rigidly attached to the base of the skull, impact kinematics were transformed to the head center of gravity and linear and angular kinematic data were compared to the iMGs including Peak Linear Acceleration, Peak Angular Acceleration, Peak Angular Velocity, Head Injury Criterion (HIC), HIC duration, and Brain Injury Criterion. RESULTS Compared to the REF sensor, the PRE iMG underpredicted most of the kinematic data with slopes of the validation regression line between 0.72 and 1.04 and the DTS overpredicted all the kinematic data with slopes of the regression line between 1.4 and 8.7. CONCLUSION While the PRE iMG was closer to the REF sensor compared to the DTS iMG, the results did not support the previous findings reported with use of ATDs. Hence, our study highlights the benefits of using PMHS for validating the accuracy of iMGs since they closely mimic the human body compared to any ATD's mandible.
Collapse
Affiliation(s)
- Jay Venkatraman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | - Mitchell Z Abrams
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Donald Sherman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | | | | | - Robert E MacDonald
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Elizabeth Dimbath
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Derek Pang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alexandra Gray
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jason F Luck
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cameron R Bass
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cynthia A Bir
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Clansey AC, Bondi D, Kenny R, Luke D, Masood Z, Gao Y, Elez M, Ji S, Rauscher A, van Donkelaar P, Wu LC. On-field Head Acceleration Exposure Measurements Using Instrumented Mouthguards: Multi-stage Screening to Optimize Data Quality. Ann Biomed Eng 2024; 52:2666-2677. [PMID: 39097541 DOI: 10.1007/s10439-024-03592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Instrumented mouthguards (iMGs) are widely applied to measure head acceleration event (HAE) exposure in sports. Despite laboratory validation, on-field factors including potential sensor skull-decoupling and spurious recordings limit data accuracy. Video analysis can provide complementary information to verify sensor data but lacks quantitative kinematics reference information and suffers from subjectivity. The purpose of this study was to develop a rigorous multi-stage screening procedure, combining iMG and video as independent measurements, aimed at improving the quality of on-field HAE exposure measurements. We deployed iMGs and gathered video recordings in a complete university men's ice hockey varsity season. We developed a four-stage process that involves independent video and sensor data collection (Stage I), general screening (Stage II), cross verification (Stage III), and coupling verification (Stage IV). Stage I yielded 24,596 iMG acceleration events (AEs) and 17,098 potential video HAEs from all games. Approximately 2.5% of iMG AEs were categorized as cross-verified and coupled iMG HAEs after Stage IV, and less than 1/5 of confirmed or probable video HAEs were cross-verified with iMG data during stage III. From Stage I to IV, we observed lower peak kinematics (median peak linear acceleration from 36.0 to 10.9 g; median peak angular acceleration from 3922 to 942 rad/s2) and reduced high-frequency signals, indicative of potential reduction in kinematic noise. Our study proposes a rigorous process for on-field data screening and provides quantitative evidence of data quality improvements using this process. Ensuring data quality is critical in further investigation of potential brain injury risk using HAE exposure data.
Collapse
Affiliation(s)
- Adam C Clansey
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Rebecca Kenny
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - David Luke
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Zaryan Masood
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Gao
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Marko Elez
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Alexander Rauscher
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Lyndia C Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Abrams MZ, Venkatraman J, Sherman D, Ortiz-Paparoni M, Bercaw JR, MacDonald RE, Kait J, Dimbath ED, Pang DY, Gray A, Luck JF, Bir CA, Bass CR. Biofidelity and Limitations of Instrumented Mouthguard Systems for Assessment of Rigid Body Head Kinematics. Ann Biomed Eng 2024; 52:2872-2883. [PMID: 38910203 DOI: 10.1007/s10439-024-03563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Instrumented mouthguard systems (iMGs) are commonly used to study rigid body head kinematics across a variety of athletic environments. Previous work has found good fidelity for iMGs rigidly fixed to anthropomorphic test device (ATD) headforms when compared to reference systems, but few validation studies have focused on iMG performance in human cadaver heads. Here, we examine the performance of two boil-and-bite style iMGs in helmeted cadaver heads. Three unembalmed human cadaver heads were fitted with two instrumented boil-and-bite mouthguards [Prevent Biometrics and Diversified Technical Systems (DTS)] per manufacturer instructions. Reference sensors were rigidly fixed to each specimen. Specimens were fitted with a Riddell SpeedFlex American football helmet and impacted with a rigid impactor at three velocities and locations. All impact kinematics were compared at the head center of gravity. The Prevent iMG performed comparably to the reference system up to ~ 60 g in linear acceleration, but overall had poor correlation (CCC = 0.39). Prevent iMG angular velocity and BrIC generally well correlated with the reference, while underestimating HIC and overestimating HIC duration. The DTS iMG consistently overestimated the reference across all measures, with linear acceleration error ranging from 10 to 66%, and angular acceleration errors greater than 300%. Neither iMG demonstrated consistent agreement with the reference system. While iMG validation efforts have utilized ATD testing, this study highlights the need for cadaver testing and validation of devices intended for use in-vivo, particularly when considering realistic (non-idealized) sensor-skull coupling, when accounting for interactions with the mandible and when subject-specific anatomy may affect device performance.
Collapse
Affiliation(s)
- Mitchell Z Abrams
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA.
| | - Jay Venkatraman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Donald Sherman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Maria Ortiz-Paparoni
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Jefferson R Bercaw
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Robert E MacDonald
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Elizabeth D Dimbath
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Derek Y Pang
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Alexandra Gray
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Jason F Luck
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Cynthia A Bir
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Cameron R Bass
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Holcomb TD, Marks ME, Pritchard NS, Miller LE, Rowson S, Bullock GS, Urban JE, Stitzel JD. On-Field Evaluation of Mouthpiece-and-Helmet-Mounted Sensor Data from Head Kinematics in Football. Ann Biomed Eng 2024; 52:2655-2665. [PMID: 39058402 PMCID: PMC11402845 DOI: 10.1007/s10439-024-03583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Wearable sensors are used to measure head impact exposure in sports. The Head Impact Telemetry (HIT) System is a helmet-mounted system that has been commonly utilized to measure head impacts in American football. Advancements in sensor technology have fueled the development of alternative sensor methods such as instrumented mouthguards. The objective of this study was to compare peak magnitude measured from high school football athletes dually instrumented with the HIT System and a mouthpiece-based sensor system. METHODS Data was collected at all contact practices and competitions over a single season of spring football. Recorded events were observed and identified on video and paired using event timestamps. Paired events were further stratified by removing mouthpiece events with peak resultant linear acceleration below 10 g and events with contact to the facemask or body of athletes. RESULTS A total of 133 paired events were analyzed in the results. There was a median difference (mouthpiece subtracted from HIT System) in peak resultant linear and rotational acceleration for concurrently measured events of 7.3 g and 189 rad/s2. Greater magnitude events resulted in larger kinematic differences between sensors and a Bland Altman analysis found a mean bias of 8.8 g and 104 rad/s2, respectively. CONCLUSION If the mouthpiece-based sensor is considered close to truth, the results of this study are consistent with previous HIT System validation studies indicating low error on average but high scatter across individual events. Future researchers should be mindful of sensor limitations when comparing results collected using varying sensor technologies.
Collapse
Affiliation(s)
- Ty D Holcomb
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Madison E Marks
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - N Stewart Pritchard
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Logan E Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Steve Rowson
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Garrett S Bullock
- Department of Orthopedic Surgery and Rehabilitation, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jillian E Urban
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA.
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Lin N, Tierney G, Ji S. Effect of Impact Kinematic Filters on Brain Strain Responses in Contact Sports. IEEE Trans Biomed Eng 2024; 71:2781-2788. [PMID: 38652634 DOI: 10.1109/tbme.2024.3392859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Impact kinematics are widely employed to investigate mechanisms of traumatic brain injury (TBI). However, they are susceptible to noise and artefacts; thus, require data filtering. Few studies have focused on how data filtering affects brain strain most relevant to TBI. Here, we report that impact-induced brain strains are much less sensitive to data filtering than kinematics based on three filtering methods: CFC180, lowpass 200 Hz, and a new method called Head Exposure to Acceleration Database in Sport (HEADSport). METHODS Using mouthguard-measured head impacts in elite rugby (N = 5694), average Euclidean distances between the three filtered angular velocity profiles and their unfiltered counterparts are used to identify three groups of impacts with large variations: 90-95th, 95-99th, and >99th percentile. From each group, 20 impacts are randomly selected for simulation using the anisotropic Worcester Head Injury Model (WHIM) V1.0. RESULTS AND CONCLUSION HEADSport and CFC180 are the most and least effective, respectively, in suppressing "unphysical artefacts" shown as sharp spikes with a rather short impulse duration (e.g., <3 ms) in angular velocity. However, maximum principal strain (MPS), especially that in the corpus callosum, is much less sensitive to data filtering compared to kinematic peaks (e.g., reduction of 3% vs. 47% and 90% for peak angular velocity and acceleration with HEADSport for impacts of >99th percentile). SIGNIFICANCE These findings confirm that the brain acts as a low-pass filter, itself, to suppress high frequency noise in impact kinematics. Therefore, brain strain can serve as a common metric for TBI biomechanical studies to maximize relevance to the injury, as it is not sensitive to kinematic filters.
Collapse
|
9
|
Tooby J, Till K, Gardner A, Stokes K, Tierney G, Weaving D, Rowson S, Ghajari M, Emery C, Bussey MD, Jones B. When to Pull the Trigger: Conceptual Considerations for Approximating Head Acceleration Events Using Instrumented Mouthguards. Sports Med 2024; 54:1361-1369. [PMID: 38460080 PMCID: PMC11239719 DOI: 10.1007/s40279-024-02012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Head acceleration events (HAEs) are acceleration responses of the head following external short-duration collisions. The potential risk of brain injury from a single high-magnitude HAE or repeated occurrences makes them a significant concern in sport. Instrumented mouthguards (iMGs) can approximate HAEs. The distinction between sensor acceleration events, the iMG datum for approximating HAEs and HAEs themselves, which have been defined as the in vivo event, is made to highlight limitations of approximating HAEs using iMGs. This article explores the technical limitations of iMGs that constrain the approximation of HAEs and discusses important conceptual considerations for stakeholders interpreting iMG data. The approximation of HAEs by sensor acceleration events is constrained by false positives and false negatives. False positives occur when a sensor acceleration event is recorded despite no (in vivo) HAE occurring, while false negatives occur when a sensor acceleration event is not recorded after an (in vivo) HAE has occurred. Various mechanisms contribute to false positives and false negatives. Video verification and post-processing algorithms offer effective means for eradicating most false positives, but mitigation for false negatives is less comprehensive. Consequently, current iMG research is likely to underestimate HAE exposures, especially at lower magnitudes. Future research should aim to mitigate false negatives, while current iMG datasets should be interpreted with consideration for false negatives when inferring athlete HAE exposure.
Collapse
Affiliation(s)
- James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
| | - Kevin Till
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Leeds Rhinos Rugby League Club, Leeds, UK
| | - Andrew Gardner
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Keith Stokes
- Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath, UK
- Medical Services, Rugby Football Union, Twickenham, UK
| | - Gregory Tierney
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Sport and Exercise Sciences Research Institute, School of Sport, Ulster University, Belfast, UK
| | - Daniel Weaving
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Steve Rowson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Leeds Beckett University, Leeds, UK
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, London, UK
| | - Carolyn Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Melanie Dawn Bussey
- School of Physical Education Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town and Sports Science Institute of South Africa, Cape Town, South Africa
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
- Rugby Football League, England Performance Unit, Red Hall, Leeds, UK
- Premiership Rugby, London, UK
| |
Collapse
|
10
|
Tierney G, Rowson S, Gellner R, Allan D, Iqbal S, Biglarbeigi P, Tooby J, Woodward J, Payam AF. Head Exposure to Acceleration Database in Sport (HEADSport): a kinematic signal processing method to enable instrumented mouthguard (iMG) field-based inter-study comparisons. BMJ Open Sport Exerc Med 2024; 10:e001758. [PMID: 38304714 PMCID: PMC10831454 DOI: 10.1136/bmjsem-2023-001758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Objective Instrumented mouthguard (iMG) systems use different signal processing approaches limiting field-based inter-study comparisons, especially when artefacts are present in the signal. The objective of this study was to assess the frequency content and characteristics of head kinematic signals from head impact reconstruction laboratory and field-based environments to develop an artefact attenuation filtering method (HEADSport filter method). Methods Laboratory impacts (n=72) on a test-dummy headform ranging from 25 to 150 g were conducted and 126 rugby union players were equipped with iMGs for 209 player-matches. Power spectral density (PSD) characteristics of the laboratory impacts and on-field head acceleration events (HAEs) (n=5694) such as the 95th percentile cumulative sum PSD frequency were used to develop the HEADSport method. The HEADSport filter method was compared with two other common filtering approaches (Butterworth-200Hz and CFC180 filter) through signal-to-noise ratio (SNR) and mixed linear effects models for laboratory and on-field events, respectively. Results The HEADSport filter method produced marginally higher SNR than the Butterworth-200Hz and CFC180 filter and on-field peak linear acceleration (PLA) and peak angular acceleration (PAA) values within the magnitude range tested in the laboratory. Median PLA and PAA (and outlier values) were higher for the CFC180 filter than the Butterworth-200Hz and HEADSport filter method (p<0.01). Conclusion The HEADSport filter method could enable iMG field-based inter-study comparisons and is openly available at https://github.com/GTBiomech/HEADSport-Filter-Method.
Collapse
Affiliation(s)
- Gregory Tierney
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Steven Rowson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Ryan Gellner
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - David Allan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Sadaf Iqbal
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | | | - James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - James Woodward
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, UK
| |
Collapse
|
11
|
Luke D, Kenny R, Bondi D, Clansey AC, Wu LC. On-field instrumented mouthguard coupling. J Biomech 2024; 162:111889. [PMID: 38071791 DOI: 10.1016/j.jbiomech.2023.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Instrumented mouthguard (iMG) sensors have been developed to measure sports head acceleration events (HAE) in brain injury research. Laboratory validation studies show that effective coupling of iMGs with the human skull is crucial for accurate head kinematics measurements. However, iMG-skull coupling has not been investigated in on-field sports settings. The objective of this study was to assess on-field iMG coupling using infrared proximity sensing and to investigate coupling effects on kinematics signal characteristics. Forty-two university-level men's ice hockey (n = 21) and women's rugby (n = 21) athletes participated in the study, wearing iMGs during 6-7 month in-season periods. Proximity data classified video-verified HAE recordings into four main iMG coupling categories: coupled (on-teeth), decoupling (on-teeth to off-teeth), recoupling (off-teeth to on-teeth) and decoupled (off-teeth). Poorly-coupled HAEs showed significantly higher peak angular acceleration amplitudes and greater signal power in medium-high frequency bands compared with well-coupled HAEs, indicating potential iMG movements independent of the skull. Further, even video-verified true positives included poorly-coupled HAEs, and iMG coupling patterns varied between the men's hockey and women's rugby teams. Our findings show the potential of using proximity sensing in iMGs to identify poorly-coupled HAEs. Utilizing this data screening process in conjunction with video review may mitigate a key source of sensor noise and enhance the overall quality of on-field sports HAE datasets.
Collapse
Affiliation(s)
- David Luke
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Rebecca Kenny
- Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Adam C Clansey
- Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Lyndia C Wu
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Jones CM, Austin K, Augustus SN, Nicholas KJ, Yu X, Baker C, Chan EYK, Loosemore M, Ghajari M. An Instrumented Mouthguard for Real-Time Measurement of Head Kinematics under a Large Range of Sport Specific Accelerations. SENSORS (BASEL, SWITZERLAND) 2023; 23:7068. [PMID: 37631606 PMCID: PMC10457941 DOI: 10.3390/s23167068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Head impacts in sports can produce brain injuries. The accurate quantification of head kinematics through instrumented mouthguards (iMG) can help identify underlying brain motion during injurious impacts. The aim of the current study is to assess the validity of an iMG across a large range of linear and rotational accelerations to allow for on-field head impact monitoring. METHODS Drop tests of an instrumented helmeted anthropometric testing device (ATD) were performed across a range of impact magnitudes and locations, with iMG measures collected concurrently. ATD and iMG kinematics were also fed forward to high-fidelity brain models to predict maximal principal strain. RESULTS The impacts produced a wide range of head kinematics (16-171 g, 1330-10,164 rad/s2 and 11.3-41.5 rad/s) and durations (6-18 ms), representing impacts in rugby and boxing. Comparison of the peak values across ATD and iMG indicated high levels of agreement, with a total concordance correlation coefficient of 0.97 for peak impact kinematics and 0.97 for predicted brain strain. We also found good agreement between iMG and ATD measured time-series kinematic data, with the highest normalized root mean squared error for rotational velocity (5.47 ± 2.61%) and the lowest for rotational acceleration (1.24 ± 0.86%). Our results confirm that the iMG can reliably measure laboratory-based head kinematics under a large range of accelerations and is suitable for future on-field validity assessments.
Collapse
Affiliation(s)
- Chris M. Jones
- Sports and Wellbeing Analytics, Swansea SA7 0AJ, UK; (K.A.)
- Institute of Sport and Exercise Health (ISEH), Division Surgery Interventional Science, University College London, London W1T 7HA, UK
| | - Kieran Austin
- Sports and Wellbeing Analytics, Swansea SA7 0AJ, UK; (K.A.)
- Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester PO19 6PE, UK
| | - Simon N. Augustus
- Department of Applied and Human Sciences, Kingston University London, London KT1 2EE, UK
| | | | - Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Claire Baker
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Emily Yik Kwan Chan
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Mike Loosemore
- Institute of Sport and Exercise Health (ISEH), Division Surgery Interventional Science, University College London, London W1T 7HA, UK
- English Institute of Sport, Manchester M11 3BS, UK
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| |
Collapse
|
13
|
Norris C. Annals of Biomedical Engineering 2022 Year in Review. Ann Biomed Eng 2023; 51:865-867. [PMID: 37010647 DOI: 10.1007/s10439-023-03191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Affiliation(s)
- Carly Norris
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
14
|
Arbogast KB, Funk JR, Solomon G, Crandall J. Measuring Head Acceleration Like a CHAMP. J Athl Train 2023; 58:283-284. [PMID: 36521167 PMCID: PMC11215641 DOI: 10.4085/1062-6050-0516.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Kristy B. Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - Gary Solomon
- Player Health and Safety Department, National Football League, New York, NY
| | | |
Collapse
|
15
|
Consensus Head Acceleration Measurement Practices (CHAMP): Study Design and Statistical Analysis. Ann Biomed Eng 2022; 50:1346-1355. [PMID: 36253602 PMCID: PMC9652215 DOI: 10.1007/s10439-022-03101-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
Abstract
Head impact measurement devices enable opportunities to collect impact data directly from humans to study topics like concussion biomechanics, head impact exposure and its effects, and concussion risk reduction techniques in sports when paired with other relevant data. With recent advances in head impact measurement devices and cost-effective price points, more and more investigators are using them to study brain health questions. However, as the field's literature grows, the variance in study quality is apparent. This brief paper aims to provide a high-level set of key considerations for the design and analysis of head impact measurement studies that can help avoid flaws introduced by sampling biases, false data, missing data, and confounding factors. We discuss key points through four overarching themes: study design, operational management, data quality, and data analysis.
Collapse
|