1
|
Chen Z, Franklin DW. Muscle Moment Arm-Joint Angle Relations in the Hip, Knee, and Ankle: A Visualization of Datasets. Ann Biomed Eng 2025:10.1007/s10439-025-03735-w. [PMID: 40343628 DOI: 10.1007/s10439-025-03735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Muscle moment arm is a property that associates muscle force with joint moment and is crucial to biomechanical analysis. In musculoskeletal simulations, the accuracy of moment arm is as important as that of muscle force, and calibrating moment arms in a musculoskeletal model requires data from anatomical measurements. Nonetheless, such data are elusive, and the complex relation between moment arm and joint angle can be unclear. Using common techniques in systematic review, we collected a total of 300 moment arm datasets from literature and visualized the muscle moment arm-joint angle relations in the human hip, knee, and ankle. The findings contribute to the analysis of musculoskeletal mechanics and providing reference regarding the experimental design for future moment arm measurements.
Collapse
Affiliation(s)
- Ziyu Chen
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Hooijmans MT, Lockard CA, Zhou X, Coolbaugh C, Guzman RP, Kersh ME, Damon BM. A registration strategy to characterize DTI-observed changes in skeletal muscle architecture due to passive shortening. PLoS One 2025; 20:e0302675. [PMID: 40063556 PMCID: PMC11892864 DOI: 10.1371/journal.pone.0302675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/07/2024] [Indexed: 03/19/2025] Open
Abstract
Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state. As an initial step toward this long-term objective, the aim of this study was to determine if an image registration strategy could be used to convert the whole-muscle average architectural properties observed in the extended joint position to those of a flexed position, following passive rotation. DTI and high-resolution fat/water scans were acquired in the lower leg of seven healthy participants on a 3T MR system in + 20° and -10° ankle positions. The diffusion and anatomical images from the two positions were used to propagate DTI fiber-tracts from seed points along a mesh representation of the aponeurosis of fiber insertion. The -10° and + 20° anatomical images were registered and the displacement fields were used to transform the mesh and fiber-tracts from the + 20° to the -10° position. Student's paired t-tests were used to compare the mean architectural parameters between the original and transformed fiber-tracts. The whole-muscle average fiber-tract length, pennation angle, curvature, and physiological cross-sectional areas estimates did not differ significantly. DTI fiber-tracts in plantarflexion can be transformed to dorsiflexion position without significantly affecting the average architectural characteristics of the fiber-tracts. In the future, a similar approach could be used to evaluate muscle architecture in a contracted state.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, United States of America
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carly A. Lockard
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, United States of America
| | - Xingyu Zhou
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Crystal Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Roberto P. Guzman
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, United States of America
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bruce M. Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Santos GF, Jakubowitz E, Hurschler C. Predicting prosthetic gait and the effects of induced stiff-knee gait. PLoS One 2025; 20:e0314758. [PMID: 39746053 PMCID: PMC11695016 DOI: 10.1371/journal.pone.0314758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025] Open
Abstract
Prosthetic gait differs considerably from the unimpaired gait. Studying alterations in the gait patterns could help to understand different adaptation mechanisms adopted by these populations. This study investigated the effects of induced stiff-knee gait (SKG) on prosthetic and healthy gait patterns and the capabilities of predictive simulation. Self-selected speed gait of two participants was measured: one healthy subject and one knee disarticulation subject using a variable-damping microprocessor controlled knee prosthesis. Both performed unperturbed gait and gait with restricted knee flexion. Experimental joint angles and moments were computed using OpenSim and muscle activity was measured using surface electromyography (EMG). The differences between the conditions were analyzed using statistical parametric mapping (SPM). Predictive models based on optimal control were created to represent the participants. Additionally, a hypothetical unimpaired predictive model with the same anthropometric characteristics as the amputee was created. Some patterns observed in the experimental prosthetic gait were predicted by the models, including increased knee flexion moment on the contralateral side caused by SKG in both participants, which was statistically significant according to SPM. With the exception of the rectus femoris muscle, we also found overall good agreement between measured EMG and predicted muscle activation. We predicted more alterations in activation of the hip flexors than other muscle groups due to the amputation and in the activation of the biceps femoris short head, quadratus femoris, and tibialis anterior due to SKG. In summary, we demonstrated that the method applied in this study could predict gait alterations due to amputation of the lower limb or due to imposed SKG.
Collapse
Affiliation(s)
- Gilmar F. Santos
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany
| | - Eike Jakubowitz
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Borsdorf M, Papenkort S, Böl M, Siebert T. Influence of muscle packing on the three-dimensional architecture of rabbit M. plantaris. J Mech Behav Biomed Mater 2024; 160:106762. [PMID: 39413545 DOI: 10.1016/j.jmbbm.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
In their physiological condition, muscles are surrounded by connective tissue, other muscles and bone. These tissues exert transverse forces that change the three-dimensional shape of the muscle compared to its isolated condition, in which all surrounding tissues are removed. A change in shape affects the architecture of a muscle and therefore its mechanical properties. The rabbit M. plantaris is a multi-pennate calf muscle consisting of two compartments. A smaller, bi-pennate inner muscle compartment is embedded in a larger, uni-pennate outer compartment (Böl et al., 2015). As part of the calf, the plantaris is tightly packed between other muscles. It is unclear how packing affects the shape and architecture of the plantaris. Therefore, we examined the isolated and packed plantaris of the contralateral legs of three rabbits to determine the influence of the surrounding muscles on its shape and architectural properties using photogrammetric reconstruction and manual digitization, respectively. In the packed condition, the plantaris showed a 27% increase in fascicle pennation and a 54% increase in fascicle curvature compared to the isolated condition. Fascicle length was not affected by muscle packing. The change in muscle architecture occurred mainly in the outer compartment of the plantaris. Furthermore, the isolated plantaris showed a more circular shape and a reduced width of its muscle belly. It can be concluded that the packed plantaris is flattened by the forces exerted by the surrounding muscles, causing a complex architectural change. The data provided improve our understanding of muscle packages in general and can be used to develop and validate realistic three-dimensional muscle models.
Collapse
Affiliation(s)
- Mischa Borsdorf
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Zhang L, Van Wouwe T, Yan S, Wang R. EMG-Constrained and Ultrasound-Informed Muscle-Tendon Parameter Estimation in Post-Stroke Hemiparesis. IEEE Trans Biomed Eng 2024; 71:1798-1809. [PMID: 38206783 DOI: 10.1109/tbme.2024.3352556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Secondary morphological and mechanical property changes in the muscle-tendon unit at the ankle joint are often observed in post-stroke individuals. These changes may alter the force generation capacity and affect daily activities such as locomotion. This work aimed to estimate subject-specific muscle-tendon parameters in individuals after stroke by solving the muscle redundancy problem using direct collocation optimal control methods based on experimental electromyography (EMG) signals and measured muscle fiber length. Subject-specific muscle-tendon parameters of the gastrocnemius, soleus, and tibialis anterior were estimated in seven post-stroke individuals and seven healthy controls. We found that the maximum isometric force, tendon stiffness and optimal fiber length in the post-stroke group were considerably lower than in the control group. We also computed the root mean square error between estimated and experimental values of muscle excitation and fiber length. The musculoskeletal model with estimated subject-specific muscle tendon parameters (from the muscle redundancy solver), yielded better muscle excitation and fiber length estimations than did scaled generic parameters. Our findings also showed that the muscle redundancy solver can estimate muscle-tendon parameters that produce force behavior in better accordance with the experimentally-measured value. These muscle-tendon parameters in the post-stroke individuals were physiologically meaningful and may shed light on treatment and/or rehabilitation planning.
Collapse
|
7
|
Hooijmans MT, Lockard CA, Zhou X, Coolbaugh C, Pineda Guzman R, Kersh ME, Damon BM. A registration strategy to characterize DTI-observed changes in skeletal muscle architecture due to passive shortening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589123. [PMID: 38645028 PMCID: PMC11030449 DOI: 10.1101/2024.04.11.589123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state. As an initial step toward this long-term objective, the aim of this study was to determine if an image registration strategy could be used to convert the whole-muscle average architectural properties observed in the extended joint position to those of a flexed position, following passive rotation. DTI and high-resolution fat/water scans were acquired in the lower leg of seven healthy participants on a 3T MR system in +20° (plantarflexion) and -10° (dorsiflexion) foot positions. The diffusion and anatomical images from the two positions were used to propagate DTI fiber-tracts from seed points along a mesh representation of the aponeurosis of fiber insertion. The -10° and +20° anatomical images were registered and the displacement fields were used to transform the mesh and fiber-tracts from the +20° to the -10° position. Student's paired t-tests were used to compare the mean architectural parameters between the original and transformed fiber-tracts. The whole-muscle average fiber-tract length, pennation angle, curvature, and physiological cross-sectional areas estimates did not differ significantly. DTI fiber-tracts in plantarflexion can be transformed to dorsiflexion position without significantly affecting the average architectural characteristics of the fiber-tracts. In the future, a similar approach could be used to evaluate muscle architecture in a contracted state.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carly A. Lockard
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
| | - Xingyu Zhou
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Crystal Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Roberto Pineda Guzman
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Bruce M. Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|