1
|
Tang X, Liu T, Li X, Sheng X, Xing J, Chi H, Zhan W. Protein phosphorylation in hemocytes of Fenneropenaeus chinensis in response to white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:106-114. [PMID: 35092807 DOI: 10.1016/j.fsi.2022.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation and dephosphorylation are the most common and important regulatory mechanisms in signal transduction, which play a vital role in immune defense response. Our previous study has found the level of tyrosine phosphorylation was significantly changed in the hemocytes of Fenneropenaeus chinensis upon white spot syndrome virus (WSSV) infection. In order to explore the relationship between protein phosphorylation and WSSV infection, the quantitative phosphoproteomics was employed to identify differential phosphorylated proteins in hemocytes of F. chinensis before and after WSSV infection, and elucidate the role of key differential phosphorylated proteins in WSSV infection process. The results showed that a total of 147 differential phosphorylated proteins were identified in the hemocytes, including 64 phosphorylated proteins and 83 dephosphorylated proteins, which were mostly enriched in pyruvate metabolism, TCA cycle, glycolysis, and ribosomal biosynthesis. Functional analysis of differential phosphorylated proteins showed that they were involved in cell apoptosis, cell phagocytosis, cell metabolism and antiviral infection. A total of 236 differential phosphorylation sites were found, including 91 modified sites in the phosphorylation proteins and 145 modified sites in the dephosphorylation proteins. Motif analysis showed that these phosphorylation sites could activate mitogen-activated protein kinase, P70 S6 kinase and other kinases in hemocytes. Moveover, the phosphorylation levels of eukaryotic protein initiation factor 4E binding proteins and histone H3 were further determined by ELISA and Western blotting, which both exhibited a significant increase post WSSV infection and reach their peak levels at 6 and 12 h, respectively. Moreover, we found that lactate, a metabolite closely related to pyruvate metabolism, TCA cycle and glycolysis, was significantly increased in the hemocytes after WSSV infection. This study revealed the protein phosphorylation response in hemocytes of F. chinensis to WSSV infection, which help to clarify the response characteristics and virus resistance mechanism of hemocytes in F. chinensis, and also facilitate further understanding of the interaction between WSSV and shrimp hemocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ting Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoai Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
2
|
Lin Y, Li Y, Zhu X, Huang Y, Li Y, Li M. Genetic Contexts Characterize Dynamic Histone Modification Patterns Among Cell Types. Interdiscip Sci 2019; 11:698-710. [PMID: 31165438 DOI: 10.1007/s12539-019-00338-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
Abstract
Histone modifications play critical roles in mammalian development, regulating chromatin structure and gene expression. Dynamic histone modifications among cell types have been shown to associate with changes in mammalian development. However, how to quantitatively measure the histone modification alterations and how histone modifications vary across cell types under different genetic contexts remain largely unexplored and whether these changes are related to the primary DNA sequence remains limited. Here, we employed an entropy-based method to measure histone modification alterations in six definite genomic regions across five cell types and identified lineage-specific histone modification genes. We observed that histone modification alterations prefer to enrich in 5'-UTR exons, and also in 3'-UTR exons and its downstream. Then we built a model to predict the histone modification patterns from the primary DNA sequence. We found that the frequencies of k-mer sequence compositions are predictive of histone modification patterns, suggesting that the primary DNA sequence correlated with the histone modification alterations among cell types. Additionally, the lineage-specific histone modification genes display a higher conservation and lower GC-content. Together, we performed a systematic analysis for histone modification alterations and demonstrated how to identify genomic region-specific elements of epigenetic and genetic regulation and histone modification patterns across different cell types.
Collapse
Affiliation(s)
- Yanmei Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xingyong Zhu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuyao Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China. .,College of Cybersecurity, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|