1
|
Shen Y, Son J, Yu XY. ToF-SIMS evaluation of PEG-related mass peaks and applications in PEG detection in cosmetic products. Sci Rep 2024; 14:14980. [PMID: 38951137 PMCID: PMC11217440 DOI: 10.1038/s41598-024-65504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.
Collapse
Affiliation(s)
- Yanjie Shen
- College of Biology and Oceanography, Weifang University, 5147 Dongfeng East Street, Weifang, 261061, Shandong, China
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
2
|
Wiśniewska M, Urban T, Tokarska K, Marciniak P, Giel A, Nowicki P. Removal of Organic Dyes, Polymers and Surfactants Using Carbonaceous Materials Derived from Walnut Shells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1987. [PMID: 38730794 PMCID: PMC11084864 DOI: 10.3390/ma17091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
A series of new granular carbonaceous adsorbents was prepared via single-stage physical and chemical activation of walnut shells. Their suitability for removing various types of organic pollutants (represented by dyes, surfactants and water-soluble polymers) from the liquid phase was assessed. The activation of the precursor was carried out with CO2 and H3PO4 using conventional heating. Activated biocarbons were characterized in terms of chemical composition, acidic-basic nature of the surface, textural and electrokinetic properties as well as thermal stability. Depending on the type of activating agent used during the activation procedure, the obtained biocarbons differed in terms of specific surface area (from 401 to 1361 m2/g) and the type of porous structure produced (microporosity contribution in the range of 45-75%). Adsorption tests proved that the effectiveness of removing organic pollutants from the liquid phase depended to a large extent on the type of prepared adsorbent as well as the chemical nature and the molecular size of the adsorbate used. The chemically activated sample showed greater removal efficiency in relation to all tested pollutants. Its maximum adsorption capacity for methylene blue, poly(acrylic acid), poly(ethylene glycol) and Triton X-100 reached the levels of 247.1, 680.9, 38.5 and 61.8 mg/g, respectively.
Collapse
Affiliation(s)
- Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (T.U.); (K.T.)
| | - Teresa Urban
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (T.U.); (K.T.)
| | - Karina Tokarska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (T.U.); (K.T.)
| | - Paulina Marciniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (P.M.); (A.G.)
| | - Anna Giel
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (P.M.); (A.G.)
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (P.M.); (A.G.)
| |
Collapse
|
3
|
Alhourani A, Førde JL, Eichacker LA, Herfindal L, Hagland HR. Improved pH-Responsive Release of Phenformin from Low-Defect Graphene Compared to Graphene Oxide. ACS OMEGA 2021; 6:24619-24629. [PMID: 34604644 PMCID: PMC8482513 DOI: 10.1021/acsomega.1c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based drug carriers provide a promising addition to current cancer drug delivery options. Increased accessibility of high-quality graphene made by plasma-enhanced chemical vapor deposition (PE-CVD) makes it an attractive material to revisit in comparison to the widely studied graphene oxide (GO) in drug delivery. Here, we show the potential of repurposing the metabolic drug phenformin for cancer treatment in terms of stability, binding, and pH-responsive release. Using covalent attachment of poly(ethylene glycol) (PEG) onto pristine (PE-CVD) graphene, we show that PEG stabilized graphene nanosheets (PGNS) are stable in aqueous solutions and exhibit higher binding affinity toward phenformin than GO. Moreover, we experimentally demonstrate an improved drug release from PGNS than GO at pH levels lower than physiological conditions, yet comparable to that found in tumor microenvironments.
Collapse
Affiliation(s)
- Abdelnour Alhourani
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Jan-Lukas Førde
- Centre
for Pharmacy, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department
of Internal Medicine, Haukeland University
Hospital, 5021 Bergen, Norway
| | - Lutz Andreas Eichacker
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Lars Herfindal
- Centre
for Pharmacy, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Hanne Røland Hagland
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
4
|
Pietrelli L, Ferro S, Reverberi AP, Vocciante M. Removal of polyethylene glycols from wastewater: A comparison of different approaches. CHEMOSPHERE 2021; 273:129725. [PMID: 33529796 DOI: 10.1016/j.chemosphere.2021.129725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 05/16/2023]
Abstract
Physicochemical methods such as adsorption on activated carbon, oxidation with either ozone or Fenton reagent, and chemical precipitation (coagulation), were assessed for the removal of polyethylene glycol (PEG) from wastewater. This contaminant is rarely investigated due to its low toxicity, although its presence limits the use of large water resources. The experimental tests showed that adsorption on activated carbon is well approximated by a Langmuir isotherm, and influenced by contact time, PEG molecular weight, pH, temperature, and initial PEG concentration. Ozonation allowed fragmenting the polymeric chains but was unable to remove completely the PEG, while about 85% of the total organic carbon (TOC) was removed by Fenton oxidation reaction by using a ratio between H2O2 and FeII close to 4. Coagulation did not produce results worthy of note, most likely because the uncharged PEG molecule does not interact with the iron hydroxide flocs. However, when performed after the Fenton oxidation (i.e., by simply raising the pH to values > 8), it allowed a further reduction of the residual TOC, up to 96% of the total, in the best case. Based on the resources used by each process studied and in consideration of the effectiveness of each of them, a semi-quantitative comparison on the sustainability of the different approaches is proposed.
Collapse
Affiliation(s)
- Loris Pietrelli
- Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00100, Roma, Italy.
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd, 8/1 London Road, Mile End South, SA, 5031, Australia.
| | - Andrea P Reverberi
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy.
| | - Marco Vocciante
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy.
| |
Collapse
|
5
|
Kim K, Kim H, Jo EJ, Jang H, Park J, Jung GY, Kim MG. Reactant/polymer hybrid films on p-n junction photodetectors for self-powered, non-invasive glucose biosensors. Biosens Bioelectron 2021; 175:112855. [PMID: 33279347 DOI: 10.1016/j.bios.2020.112855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
The portability of electronic-based biosensors is limited because of the use of batteries and/or solutions containing reactants such as enzymes for assay, which limits the utility of such biosensors in point-of-care (POC) testing. In this study, we report on the development of a self-powered biosensor composed of only portable components: a reactant-containing poly (ethylene glycol) (PEG) film for the colorimetric assay, and a self-powered n-InGaZnO/p-Si photodetector. The PEG film containing enzymes and color-developing agents was formed on a glass slide by spin coating. The self-powered biosensor was fabricated by placing the hybrid film on the p-n junction photodetector, and applied in non-invasive glucose detection (salivary glucose). Injection of the target-containing solution dissolved the PEG that led to the release of enzymes and color-developing agents, resulting in a colorimetric assay. The colorimetric assay could attenuate the light reaching the photodetector, thus facilitating target concentration verification by measuring the photocurrent. Our self-powered biosensor has two main advantages: (i) all components of the biosensor are portable and (ii) dilution of target concentration is avoided as the reagents are in the PEG film. Therefore, the self-powered biosensor, without solution-phase components, could be highly beneficial for creating portable, sensitive biosensors for POC testing.
Collapse
Affiliation(s)
- Kihyeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyeonghun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyungjun Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiyoon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Gun Young Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
6
|
de Lima GF, de Souza AG, Rosa DS. Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|