1
|
Zhang C, Laipan M, Zhang L, Yu S, Li Y, Guo J. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(II) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130105. [PMID: 36206717 DOI: 10.1016/j.jhazmat.2022.130105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Using filamentous fungi to capture unicellular microalgae is an effective way for microalgae recovery in water treatment. Here, fungi Aspergillus flavus ZJ-1 and microalgae Chlorella vulgaris WZ-1 isolated from a copper tailings pond were used to study the capture effect of ZJ-1 on WZ-1. The highest capture efficiency (97.85%) was obtained within 6 h under the optimized conditions of 30 °C, 150 rpm, fungi-algae biomass ratio of 2.24:1, and initial pH of 9.24 in microalgae medium. The formed fungi-algae pellets (FAPs) were further used to remove Cu(II) from aqueous solution. Results showed that the FAPs formed at different capture times all adsorbed Cu(II) well, and the PAFs formed within 2 h (PAFs2 h) exhibited the highest Cu(II) adsorption capacity (80.42 mg·g-1). SEM images showed that Cu(II) caused a change in the internal structure of PAFs2 h from loose to compact, the mycelium shrunk, and the microalgal cells were concave. Cu(II) adsorption by PAFs2 h was well conformed to the pseudo-second-order kinetics and the Langmuir isotherm (123.61 mg·g-1 of theoretically maximum adsorption capacity). This work opens a way for applying FAPs in the remediation of heavy metal-contaminated wastewater, and the metal adsorption effect was determined by the capture amount of microalgae.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shenghui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Gu S, Su Y, Lan CQ. Effect of phosphate in medium on cell growth and Cu(II) biosorption by green alga Neochloris oleoabundans. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
4
|
Kim J, Yang HJ, Ha G, Jeong SJ, Im S, Shin SJ, Ryu MS, Seo JW, Jeong DY. Removal of Copper (II) in Aqueous Solution Using Bacillus sp. SRCM 112835 Isolated from Doenjang (Korean Fermented Soy Paste). ACTA ACUST UNITED AC 2020. [DOI: 10.13050/foodengprog.2020.24.3.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Guarín-Romero J, Rodríguez-Estupiñán P, Giraldo L, Moreno-Piraján JC. Simple and Competitive Adsorption Study of Nickel(II) and Chromium(III) on the Surface of the Brown Algae Durvillaea antarctica Biomass. ACS OMEGA 2019; 4:18147-18158. [PMID: 31720517 PMCID: PMC6843724 DOI: 10.1021/acsomega.9b02061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/03/2019] [Indexed: 05/07/2023]
Abstract
In this work Ni(II) and Cr(III) adsorption on Durvillaea antarctica surface were studied, optimal condition of pH, adsorption time is achieved at pH 5.0, with contact times of 240 and 420 minutes for a maximum adsorption capacity of 32.85 and 102.72 mg g-1 for Ni(II) and Cr(III), respectively. The changes in the vibration intensity of the functional groups detected in the starting material by Fourier transform infrared spectroscopy and the opening of the cavities after the biosorption process detected by scanning electron microscopy images suggested the interaction of the metal ions with the surface and the changes in the chemical behavior of the solid. The heavy metal adsorption equilibrium data fitted well to the Sips model. The effect of competitive ions on adsorption equilibrium was also evaluated, and the results showed that the two metals compete for the same active sites of the biosorbent; the increase of the Ni(II) initial concentration increases its adsorption capacity but decreases the adsorption capacity of Cr(III).
Collapse
Affiliation(s)
- Jhonatan
R. Guarín-Romero
- Facultad
de Ciencias, Departamento de Química, Grupo de Investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá 111711, Colombia
| | - Paola Rodríguez-Estupiñán
- Facultad
de Ciencias, Departamento de Química, Grupo de Investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá 111711, Colombia
| | - Liliana Giraldo
- Facultad
de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Moreno-Piraján
- Facultad
de Ciencias, Departamento de Química, Grupo de Investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá 111711, Colombia
- E-mail: . Phone: +571-3394949 ext. 3465, +57 13394949
ext. 2786
| |
Collapse
|
6
|
Rangabhashiyam S, Balasubramanian P. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Sharma S, Hasan A, Kumar N, Pandey LM. Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21605-21615. [PMID: 29785597 DOI: 10.1007/s11356-018-2280-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
A nano-biosorbent for the removal of methylene blue (MB) was prepared by encapsulating iron oxide nanoparticles (NPs) and Agrobacterium fabrum strain SLAJ731, in calcium alginate. The prepared biosorbent was optimized for the maximum adsorption capacity at pH 11, 160 rpm, and 25 °C. Adsorption kinetics was examined using pseudo-first-order, pseudo-second-order, and intra-particle diffusion (IPD) models. The kinetic data agreed to pseudo-second-order model indicating chemisorption of MB, which was also explained by FTIR analysis. The adsorption rate constant (k2) decreased and initial adsorption rate (h, mg g-1 min-1) increased, with an increase in initial dye concentration. The dye adsorption process included both IPD and surface adsorption, where IPD was found to be a rate-limiting step after 60 min of adsorption. The adsorption capacity was found to be 91 mg g-1 at 200 mg L-1 dye concentration. Adsorption data fitted well to Freundlich isotherm; however, it did not fit to Langmuir isotherm, indicating adsorbent surfaces were not completely saturated (monolayer formed) up to the concentration of 200 mg L-1 of MB. Thermodynamic studies proposed that the adsorption process was spontaneous and exothermic in nature. Biosorbent showed no significant decrease in adsorption capacity even after four consecutive cycles. The present study demonstrated dead biomass along with NPs as a potential biosorbent for the treatment of toxic industrial effluents.
Collapse
Affiliation(s)
- Swati Sharma
- Bio-interface and Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Abshar Hasan
- Bio-interface and Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Naveen Kumar
- AMITY Institute of Biotechnology, Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201303, India
| | - Lalit M Pandey
- Bio-interface and Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Kinetic Study of the Bioadsorption of Methylene Blue on the Surface of the Biomass Obtained from the Algae D. antarctica. J CHEM-NY 2018. [DOI: 10.1155/2018/2124845] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, there is a great pollution of water by the dyes; due to this, several studies have been carried out to remove these compounds. However, the total elimination of these pollutants from the aquatic effluents has represented a great challenge for the scientific community, for which it is necessary to carry out investigations that allow the purification of water. In this work, we studied the bioadsorption of methylene blue on the surface of the biomass obtained from the algae D. antarctica. This material was characterized by SEM and FTIR. To the data obtained in the biosorption experiments, different models of biosorption and kinetics were applied, finding that the best fit to the obtained data is given by applying the pseudo-second-order models and the Toth model, respectively. It was also determined that the maximum adsorption capacity of MB on the surface of the biomass is 702.9 mg/g, which shows that this material has great properties as a bioadsorbent.
Collapse
|
9
|
Arrieta M, López de Dicastillo C, Garrido L, Roa K, Galotto M. Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea antarctica algae and their effect on plasticized PLA bionanocomposites. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
|
11
|
Rezgui A, Guibal E, Boubakera T. Sorption of Hg(II) and Zn(II) ions using lignocellulosic sorbent (date pits). CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amina Rezgui
- Laboratoire C.H.P.N.R; Faculté des Sciences; Université de Monastir; Avenue de l'Environnement 5019 Monastir, Tunisie
| | - Eric Guibal
- Ecole des mines d'Alès, Centre des Matériaux des Mines d'Alès; C2MA/MPA/BCI; 6, Avenue de Clavières F-30319 Alès cedex France
| | - Taoufik Boubakera
- Laboratoire C.H.P.N.R; Faculté des Sciences; Université de Monastir; Avenue de l'Environnement 5019 Monastir, Tunisie
| |
Collapse
|