1
|
Wang E, Luo L, Wang J, Dai J, Li S, Chen L, Li J. A Dataset for Investigations of Amine-Impregnated Solid Adsorbent for Direct Air Capture. Sci Data 2025; 12:724. [PMID: 40312431 PMCID: PMC12046056 DOI: 10.1038/s41597-025-05037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
Amine-impregnated solid adsorbents are widely explored for point source capture and direct air capture (DAC) to address climate change. Existing literature serves as a valuable source for the investigation of amine-functionalized solid adsorbents. This study selected 52 articles from bibliographic platforms using GPT-assisted data source screening. A total of 1,336 data points were manually collected. Each data point is characterized by 28 features including the CO2 capture performance of various adsorbents from diluted to concentrated sources, resulting in 29,857 records. The methodology addresses inconsistencies in units and terminologies in the published articles and demonstrates database reliability, regularity and integrity through statistical analysis. The diverse types of amines and mesoporous solids in the database offer innovation potential for future research. In addition, two machine learning models were trained to promote dataset reuse by scientists from lab-based research and cheminformatics. This study provides opportunities to explore the use of machine learning on small databases and encourages data sharing and uniform reporting among DAC communities.
Collapse
Affiliation(s)
- Eryu Wang
- Innovation, Policy and Entrepreneurship Thrust, Society Hub, The Hong Kong University of Science and Technology (Guangzhou), No.1 Duxue Road, Nansha, Guangzhou, 511453, China
| | - Liping Luo
- Data Science and Analytics Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), No.1 Duxue Road, Nansha, Guangzhou, 511453, China
| | - Jiachuan Wang
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jiaxin Dai
- Innovation, Policy and Entrepreneurship Thrust, Society Hub, The Hong Kong University of Science and Technology (Guangzhou), No.1 Duxue Road, Nansha, Guangzhou, 511453, China
| | - Shuangyin Li
- School of Computer Science, South China Normal University, Guangzhou, China.
| | - Lei Chen
- Data Science and Analytics Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), No.1 Duxue Road, Nansha, Guangzhou, 511453, China
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jia Li
- School of Interdisciplinary Studies, Lingnan University, Tuen Mun, Hong Kong SAR.
| |
Collapse
|
2
|
Hack J, Maeda N, Meier DM. Review on CO 2 Capture Using Amine-Functionalized Materials. ACS OMEGA 2022; 7:39520-39530. [PMID: 36385890 PMCID: PMC9647976 DOI: 10.1021/acsomega.2c03385] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
CO2 capture from industry sectors or directly from the atmosphere is drawing much attention on a global scale because of the drastic changes in the climate and ecosystem which pose a potential threat to human health and life on Earth. In the past decades, CO2 capture technology relied on classical liquid amine scrubbing. Due to its high energy consumption and corrosive property, CO2 capture using solid materials has recently come under the spotlight. A variety of porous solid materials were reported such as zeolites and metal-organic frameworks. However, amine-functionalized porous materials outperform all others in terms of CO2 adsorption capacity and regeneration efficiency. This review provides a brief overview of CO2 capture by various amines and mechanistic aspects for newcomers entering into this field. This review also covers a state-of-the-art regeneration method, visible/UV light-triggered CO2 desorption at room temperature. In the last section, the current issues and future perspectives are summarized.
Collapse
|
3
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
5
|
Anyanwu JT, Wang Y, Yang RT. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO 2 Capture and Natural Gas Desulfurization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John-Timothy Anyanwu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiren Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|