1
|
Zhu DM, Yan YS, Wang H, Zhong Y, Inam, Gao YH, Li GM, Mu GD, Dong HF, Li Y, Liu DK, Ma HX, Kong LC. Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. One Health 2024; 18:100765. [PMID: 38855194 PMCID: PMC11157275 DOI: 10.1016/j.onehlt.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM2.5) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM2.5 from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ya Song Yan
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Hao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Inam
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yun Hang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Guo Dong Mu
- Jilin Provincial Animal Disease Prevention and Control Center, Jilin Animal Husbandry Building, Xi'an Road No. 4510, Changchun, PR China
| | - Hui Feng Dong
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Ding Kuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Hong Xia Ma
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| |
Collapse
|
2
|
Miklasińska-Majdanik M. Mechanisms of Resistance to Macrolide Antibiotics among Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10111406. [PMID: 34827344 PMCID: PMC8615237 DOI: 10.3390/antibiotics10111406] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus strains pose a serious treatment problem because of their multi-drug resistance (MDR). In staphylococcal strains, resistance to macrolides, lincosamides, and streptogramin B (MLSB) correlates with resistance to methicillin. The rapid transmission of erm genes responsible for MLSB resistance has strongly limited the clinical application of traditional macrolides such as erythromycin. On the other hand, in the age of increasing insensitivity to antibiotics the idea of implementing a therapy based on older generation drugs brings hope that the spread of antibiotic resistance will be limited. A thorough understanding of the resistance mechanisms contributes to design of antibiotics that avoid bacterial insensitivity. This review highlights the mechanisms of action of macrolides and mechanism of resistance to these antibiotics among Staphylococcus aureus.
Collapse
Affiliation(s)
- Maria Miklasińska-Majdanik
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Grzyb J, Pawlak K. Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56615-56627. [PMID: 34061267 PMCID: PMC8500874 DOI: 10.1007/s11356-021-14594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.
Collapse
Affiliation(s)
- Jacek Grzyb
- Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland.
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland
| |
Collapse
|
4
|
Diversity of Bioaerosols in Selected Rooms of Two Schools and Antibiotic Resistance of Isolated Staphylococcal Strains (Bydgoszcz, Poland): A Case Study. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study is aimed at evaluating microbiological air pollution in libraries, cafeterias and selected classrooms of two schools in Bydgoszcz city, northern Poland and determining the antibiotic resistance of Staphylococcal strains isolated from the indoor air. One of the investigated schools (School A) is located in the very center of the city, in the vicinity of a park, among old houses and stone-lined streets, while the other (School B), among modern residential buildings, close to a street with heavy traffic. In each school, air samples were collected in the morning, always from all three sampling sites, using the MAS-100 sampler. Selective growth media were used for bacteria and mold isolation and quantifying analysis. The antibiotic resistance of the isolated mannitol-positive staphylococci was assessed using the disc diffusion method in accordance with EUCAST recommendations. The highest mean concentration of heterotrophic bacteria was recorded in the cafeterias: 884 CFU m−3 in School A and 1906 CFU m−3 in School B. Molds were the most abundant in the library and cafeteria in School B, where their average concentration exceeded 300 CFU m−3. Cladosporium and Penicillium species prevailed, while Fusarium, Acremonium and Aspergillus were less abundant. Airborne mannitol-positive staphylococci were recorded at low concentrations, ranging from 6 to 11 CFU m−3 on average. According to the taxonomic analysis, Staphylococcus aureus isolates were the most abundant in both schools, followed by S. xylosus, S. haemolyticus and S. saprophyticus. The antibiograms indicated that resistance to erythromycin was common in 62.5% of the isolated staphylococcal strains. Levofloxacin and gentamicin were the most effective antibiotics. No multidrug-resistant strains were identified.
Collapse
|
5
|
Lee JH, Kim JY, Cho BB, Anusha JR, Sim JY, Raj CJ, Yu KH. Assessment of air purifier on efficient removal of airborne bacteria, Staphylococcus epidermidis, using single-chamber method. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:720. [PMID: 31691038 PMCID: PMC7087645 DOI: 10.1007/s10661-019-7876-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the efficiency of an air purifier using the single-chamber method for the effective removal of airborne Staphylococcus epidermidis, a nosocomial infection-causing bacterium. In this experiment, the bacterial strain S. epidermidis was injected using a nebulizer into the test chamber, which was similar to a consumer living space (60 m3). The microbial sampling was conducted via the air sampler method, and the reduction in S. epidermidis growth was monitored by performing three consecutive tests. Initially, a blank test was conducted to determine the natural decay rate and calibrate the experimental setup. After injecting the bacterial strain from 1240 to 11180 CFU per unit volume (m3), the natural decay rate showed a maximum deviation of 3.1% with a sampling error of 1.1% p at a confidence level of 95%. In addition, the particle size distribution in the test chamber was found to range from 0.3 to 5.0 μm, and a subsequent decrease in large-sized particles was observed with the operation of the air purifier, which is the size similar to that of suspended airborne bacteria. This can be used to assess the performance of the air purifier by calibrating the natural reduction value to the reduced operation value. Thus, the single-chamber technique is a promising approach for analyzing the removal efficacy of airborne bacteria from indoor air.
Collapse
Affiliation(s)
- Jung Hoon Lee
- Environmental Convergence Technology Center, Korea Testing Laboratory, 87(Guro-dong), Digital-ro 26-gil, Guro-gu, Seoul, 08389, Republic of Korea
| | - Jeong Yup Kim
- Department of Chemistry, Dongguk University, 26, 3Pil-dong, Jung-gu, Seoul, 04620, Republic of Korea
| | - Bo-Bae Cho
- Materials Department, Biot Korea Inc., 43-26, Cheomdangwagi-ro, 208 beon-gil, Buk-gu, Gwangju, Republic of Korea
| | - J R Anusha
- Department of Chemistry, Dongguk University, 26, 3Pil-dong, Jung-gu, Seoul, 04620, Republic of Korea
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, 600034, India
| | - Ju Yong Sim
- Department of Chemistry, Dongguk University, 26, 3Pil-dong, Jung-gu, Seoul, 04620, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University, 26, 3Pil-dong, Jung-gu, Seoul, 04620, Republic of Korea
| | - Kook-Hyun Yu
- Department of Chemistry, Dongguk University, 26, 3Pil-dong, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
6
|
Wolny-Koładka K, Lenart-Boroń A. Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21789-21800. [PMID: 29796881 PMCID: PMC6063325 DOI: 10.1007/s11356-018-2274-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 05/11/2023]
Abstract
The aim of the study was to determine the antimicrobial resistance profile and the occurrence of extended-spectrum beta-lactamase genes and to analyze the genetic diversity of Escherichia coli strains isolated from the environment of horse riding centers. The study was conducted using E. coli strains isolated from the air, manure, and horse nostril swabs in three horse riding centers differing in the system of horse keeping-stable (OJK Pegaz and KJK Szary) and free-range (SKH Nielepice). Resistance to antibiotics was determined using the disk-diffusion method, and the PCR technique was employed to detect the extended-spectrum β-lactamase (ESBL) genes, while the genetic diversity of strains was assessed by rep-PCR. A total of 200 strains were collected during the 2-year study, with the majority isolated from KJK Szary, while the smallest number was obtained from SKH Nielepice. The strains were mostly resistant to ampicillin, aztreonam, and ticarcillin. The tested strains were most frequently resistant to one or two antibiotics, with a maximum of ten antimicrobials at the same time. Two multidrug-resistant (MDR) strains were detected in OJK Pegaz while in KJK Szary there were two MDR and one extensively drug-resistant (XDR) strain. The ESBL mechanism was most frequently observed in OJK Pegaz (20.31% of strains) followed by KJK Szary (15.53% of strains) and SKH Nielepice (15.15% of strains). Among the ESBL-determining genes, only blaTEM and blaCTXM-9 were detected-blaTEM was mostly found in KJK Szary (53.40% of strains), while the second detected gene-blaCTXM-9-was most frequent in SKH Nielepice (6.06% of strains). The rep-PCR genotyping showed high variation among the analyzed strains, whereas its degree differed between the studied facilities, indicating that the type of horse keeping (stable vs. free-range) affects the genetic diversity of the E. coli strains. Having regard to the fact that the tested strains of E. coli were derived from non-hospitalized horses that were not treated pharmacologically, we can assume that the observed antimicrobial resistance may be of both-natural origin, i.e., not the result of the selection pressure, and acquired, the source of which could be people present in the horse riding facilities, the remaining horses which were not included in the study, and air, as well as water, fodder, and litter of the animals. Therefore, it can be concluded that the studied horses are the source of resistant E. coli and it is reasonable to continue monitoring the changes in antimicrobial resistance in those bacteria.
Collapse
Affiliation(s)
- Katarzyna Wolny-Koładka
- Department of Microbiology, University of Agriculture in Cracow, Mickiewicza Ave 24/28, 30-059, Cracow, Poland.
| | - Anna Lenart-Boroń
- Department of Microbiology, University of Agriculture in Cracow, Mickiewicza Ave 24/28, 30-059, Cracow, Poland
| |
Collapse
|
7
|
Wolny-Koładka K. Resistance to Antibiotics and the Occurrence of Genes Responsible for the Development of Methicillin Resistance in Staphylococcus Bacteria Isolated From the Environment of Horse Riding Centers. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|