1
|
Mao S, Liu Z, Tian Y, Li D, Gao X, Wen Y, Peng T, Shen W, Xiao D, Wan F, Liu L. Branched-Long-Chain Monomethyl Fatty Acids: Are They Hidden Gems? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18674-18684. [PMID: 37982580 PMCID: PMC10705331 DOI: 10.1021/acs.jafc.3c06300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Branched-long-chain monomethyl fatty acids (BLCFA) are consumed daily in significant amounts by humans in all stages of life. BLCFA are absorbed and metabolized in human intestinal epithelial cells and are not only oxidized for energy. Thus far, BLCFA have been revealed to possess versatile beneficial bioactivities, including cytotoxicity to cancer cells, anti-inflammation, lipid-lowering, reducing the risk of metabolic disorders, maintaining normal β cell function and insulin sensitivity, regulation of development, and mitigating cerebral ischemia/reperfusion injury. However, compared to other well-studied dietary fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), BLCFA has received disproportionate attention despite their potential importance. Here we outlined the major food sources, estimated intake, absorption, and metabolism in human cells, and bioactive properties of BLCFA with a focus on the bioactive mechanisms to advocate for an increased commitment to BLCFA investigations. Humans were estimated to absorb 6-5000 mg of dietary BLCFA daily from fetus to adult. Notably, iso-15:0 inhibited the growth of prostate cancer, liver cancer and T-cell non-Hodgkin lymphomas in rodent models at the effective doses of 35-105 mg/kg/day, 70 mg/kg/day, and 70 mg/kg/day, respectively. Feeding formula prepared with 20% w/w BLCFA mixture to neonatal rats with enterocolitis mitigated the intestine inflammation. Iso-15:0 at doses of 10, 40, and 80 mg/kg relieved brain ischemia/reperfusion injury in rats. In the future, it is crucial to conduct research to establish the epidemiology of BLCFA intake and their impacts on health outcomes in humans as well as to fully uncover the underlying mechanisms for their bioactivities.
Collapse
Affiliation(s)
- Siqing Mao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Ziling Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Tian
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dan Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xin Gao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yanqiong Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Weijun Shen
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| | - Dingfu Xiao
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| | - Fachun Wan
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Taormina VM, Unger AL, Schiksnis MR, Torres-Gonzalez M, Kraft J. Branched-Chain Fatty Acids-An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients 2020; 12:E2875. [PMID: 32962219 PMCID: PMC7551613 DOI: 10.3390/nu12092875] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Dairy fat and its fatty acids (FAs) have been shown to possess pro-health properties that can support health maintenance and disease prevention. In particular, branched-chain FAs (BCFAs), comprising approximately 2% of dairy fat, have recently been proposed as bioactive molecules contributing to the positive health effects associated with the consumption of full-fat dairy products. This narrative review evaluates human trials assessing the relationship between BCFAs and metabolic risk factors, while potential underlying biological mechanisms of BCFAs are explored through discussion of studies in animals and cell lines. In addition, this review details the biosynthetic pathway of BCFAs as well as the content and composition of BCFAs in common retail dairy products. Research performed with in vitro models demonstrates the potent, structure-specific properties of BCFAs to protect against inflammation, cancers, and metabolic disorders. Yet, human trials assessing the effect of BCFAs on disease risk are surprisingly scarce, and to our knowledge, no research has investigated the specific role of dietary BCFAs. Thus, our review highlights the critical need for scientific inquiry regarding dairy-derived BCFAs, and the influence of this overlooked FA class on human health.
Collapse
Affiliation(s)
- Victoria M. Taormina
- Department of Nutrition and Food Sciences, The University of Vermont, Burlington, VT 05405, USA;
| | - Allison L. Unger
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA; (A.L.U.); (M.R.S.); (J.K.)
| | - Morgan R. Schiksnis
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA; (A.L.U.); (M.R.S.); (J.K.)
| | | | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA; (A.L.U.); (M.R.S.); (J.K.)
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, The University of Vermont, Colchester, VT 05446, USA
| |
Collapse
|
3
|
Multiple Retinal Anomalies in Wfs1-Deficient Mice. Diagnostics (Basel) 2020; 10:diagnostics10090607. [PMID: 32824898 PMCID: PMC7555979 DOI: 10.3390/diagnostics10090607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Wolfram syndrome (WFS, OMIM: #222300) is an ultrarare autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness. It has been reported that the average retinal thickness in WFS patients decreases with the progression of the disease. Aim: To investigate retinal thickness and wolframin expression disorders in Wolfram syndrome 1 gene knockout (Wfs1KO) mice compared to their wild-type (WT) littermates. Materials and methods: Both bulbs with optic nerves of three mice Wfs1WT and three Wfs1KO were taken for the histopathological examination. A strain of knockout mice with mutation in exon 8 was used. Results: No expression of wolframin protein in the retina and neurodegeneration of the optic nerve of Wfs1KO mice as compared among Wfs1WT mice was observed. The mean central retinal thickness was thinner and the retinal thickness/longitudinal diameter ratio was significantly lower in hte Wfs1KO as compared to the Wfs1WT mice. In four (67%) eyeballs of Wfs1KO mice, intra-retinal neovessels were observed. Conclusions: Wfs1KO mice retina with mutation in exon 8 present similar clinical features as patients with WFS in the form of reduced retinal thickness and neurodegeneration of the optic nerve. The presence of proliferative retinopathy observed in Wfs1KO mice requires further investigation.
Collapse
|
4
|
Choi H, Phillips C, Oh JY, Potts L, Reger RL, Prockop DJ, Fulcher S. Absence of Therapeutic Benefit of the Anti-Inflammatory Protein TSG-6 for Corneal Alkali Injury in a Rat Model. Curr Eye Res 2019; 44:873-881. [PMID: 30935217 DOI: 10.1080/02713683.2019.1597893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: To investigate the therapeutic efficacy of tumor necrosis factor (TNF)-α stimulated gene/protein 6 (TSG-6) in a rat model of corneal alkali injury. Methods: Corneal alkali injury was produced by placing an NaOH-soaked filter paper disk on the central cornea of the right eye of an anesthetized male Lewis (LEW/Crl) rat. Recombinant human TSG-6, or an equal volume of phosphate-buffered saline (PBS), was administered intravenously (IV), by anterior chamber (AC) injection, or as a topical drop. The affected eyes were photographed daily using a dissecting microscope and documented for clinical time course analysis of corneal opacification. Corneal tissue was excised at pre-determined therapeutic endpoints, with subsequent qRT-PCR or histological analyses. Results: The continuous monitoring of corneal alkali injury progression revealed TSG-6 treatments do not show sufficient effectiveness in vivo regardless of IV injection, AC injection, or topical application. Corneal opacification and neovascularization were not diminished, and gene expression was not impacted by these treatments. However, both IV and AC administration of TSG-6 significantly suppressed pro-inflammatory cytokines compared to PBS-treated eyes. Conclusion: We conclude that the therapeutic potential of TSG-6 is insufficient in a rat corneal alkali injury model.
Collapse
Affiliation(s)
- Hosoon Choi
- a Department of Basic Research, Central Texas Veterans Research Foundation , Temple , Texas , USA
| | - Casie Phillips
- a Department of Basic Research, Central Texas Veterans Research Foundation , Temple , Texas , USA
| | - Joo Youn Oh
- b Department of Ophthalmology, Seoul National University Hospital , Seoul , Republic of Korea
| | - Luke Potts
- c Department of Ophthalmology and Surgery, Scott and White Eye Institute , Temple , Texas , USA
| | - Roxanne L Reger
- d Institute for Regenerative Medicine, College of Medicine, Texas A&M University , College Station , Texas , USA
| | - Darwin J Prockop
- d Institute for Regenerative Medicine, College of Medicine, Texas A&M University , College Station , Texas , USA
| | - Samuel Fulcher
- e Department of Surgery, Central Texas Veterans Health Care System , Temple , Texas , United States of America
| |
Collapse
|
5
|
Frondanol, a Nutraceutical Extract from Cucumaria frondosa, Attenuates Colonic Inflammation in a DSS-Induced Colitis Model in Mice. Mar Drugs 2018; 16:md16050148. [PMID: 29710854 PMCID: PMC5983279 DOI: 10.3390/md16050148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Frondanol is a nutraceutical lipid extract of the intestine of the edible Atlantic sea cucumber, Cucumaria frondosa, with potent anti-inflammatory effects. In the current study, we investigated Frondanol as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were given 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. The colitis group received oral Frondanol (100 mg/kg body weight/per day by gavage) and were compared with a control group and the DSS group. Disease activity index (DAI) and colon histology were scored for macroscopic and microscopic changes. Colonic tissue length, myeloperoxidase (MPO) concentration, neutrophil and macrophage marker mRNA, pro-inflammatory cytokine proteins, and their respective mRNAs were measured using ELISA and real-time RT-PCR. The tissue content of leukotriene B4 (LTB4) was also measured using ELISA. Frondanol significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue MPO concentrations, neutrophil and macrophage mRNA expression (F4/80 and MIP-2), and pro-inflammatory cytokine content (IL-1β, IL-6 and TNF-α) both at the protein and mRNA level were significantly reduced by Frondanol. The increase in content of the pro-inflammatory mediator leukotriene B4 (LTB4) induced by DSS was also significantly inhibited by Frondanol. It was thus found that Frondanol supplementation attenuates colon inflammation through its potent anti-inflammatory activity.
Collapse
|
6
|
Rolfsen ML, Frisard NE, Stern EM, Foster TP, Bhattacharjee PS, McFerrin Jr HE, Clement C, Rodriguez PC, Lukiw WJ, Bergsma DR, Ochoa AC, Hill JM. Corneal neovascularization: a review of the molecular biology and current therapies. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.13.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Mello GR, Pizzolatti ML, Wasilewski D, Santhiago MR, Budel V, Moreira H. The effect of subconjunctival bevacizumab on corneal neovascularization, inflammation and re-epithelization in a rabbit model. Clinics (Sao Paulo) 2011; 66:1443-50. [PMID: 21915498 PMCID: PMC3161226 DOI: 10.1590/s1807-59322011000800023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/02/2011] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To evaluate the use of subconjunctival bevacizumab on corneal neovascularization in an experimental rabbit model for its effect on vessel extension, inflammation, and corneal epithelialization. METHODS In this prospective, randomized, blinded, experimental study, 20 rabbits were submitted to a chemical trauma with sodium hydroxide and subsequently divided into two groups. The experimental group received a subconjunctival injection of bevacizumab (0.15 m; 3.75 mg), and the control group received an injection of 0.15 ml saline solution. After 14 days, two blinded digital photograph analyses were conducted to evaluate the inflammation/diameter of the vessels according to pre-established criteria. A histopathological analysis of the cornea evaluated the state of the epithelium and the number of polymorphonuclear cells. RESULTS A concordance analysis using Kappa's statistic showed a satisfactory level of agreement between the two blinded digital photography analyses. The neovascular vessel length was greater in the control group (p<0.01) than in the study group. However, the histopathological examination revealed no statistically significant differences between the groups in terms of the state of the epithelium and the number of polymorphonuclear cells. CONCLUSIONS Subconjunctival bevacizumab inhibited neovascularization in the rabbit cornea. However, this drug was not effective at reducing inflammation. The drug did not induce persistent corneal epithelial defects.
Collapse
|
8
|
Wagner EM, Sánchez J, McClintock JY, Jenkins J, Moldobaeva A. Inflammation and ischemia-induced lung angiogenesis. Am J Physiol Lung Cell Mol Physiol 2007; 294:L351-7. [PMID: 18156440 DOI: 10.1152/ajplung.00369.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A role for inflammation in modulating the extent of angiogenesis has been shown for a number of organs. The present study was undertaken to evaluate the importance of leukocyte subpopulations for systemic angiogenesis of the lung after left pulmonary artery ligation (LPAL) in a mouse model of chronic pulmonary thromboembolism. Since we (24) previously showed that depletion of neutrophils did not alter the angiogenic outcome, we focused on the effects of dexamethasone pretreatment (general anti-inflammatory) and gadolinium chloride treatment (macrophage inactivator) and studied Rag-1(-/-) mice (T/B lymphocyte deficient). We measured inflammatory cells in bronchoalveolar lavage fluid and lung homogenate macrophage inflammatory protein-2 (MIP-2) and IL-6 protein levels within 24 h after LPAL and systemic blood flow to the lung 14 days after LPAL with labeled microspheres as a measure of angiogenesis. Blood flow to the left lung was significantly reduced after dexamethasone treatment compared with untreated control LPAL mice (66% decrease; P < 0.05) and significantly increased in T/B lymphocyte-deficient mice (88% increase; P < 0.05). Adoptive transfer of splenocytes (T/B lymphocytes) significantly reversed the degree of angiogenesis observed in the Rag-1(-/-) mice back to the level of control LPAL. Average number of lavaged macrophages for each group significantly correlated with average blood flow in the study groups (r(2) = 0.9181; P = 0.01 different from 0). Despite differences in angiogenesis, left lung homogenate MIP-2 and IL-6 did not differ among study groups. We conclude that inflammatory cells modulate the degree of angiogenesis in this lung model where lymphocytes appear to limit the degree of neovascularization, whereas monocytes/macrophages likely promote angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M Wagner
- Johns Hopkins Asthma and Allergy Center, Division of Pulmonary and Critical Care Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|