1
|
Vascular amounts and dispersion of caliber-classified vessels as key parameters to quantitate 3D micro-angioarchitectures in multiple myeloma experimental tumors. Sci Rep 2018; 8:17520. [PMID: 30504794 PMCID: PMC6269464 DOI: 10.1038/s41598-018-35788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
Blood vessel micro-angioarchitecture plays a pivotal role in tumor progression, metastatic dissemination and response to therapy. Thus, methods able to quantify microvascular trees and their anomalies may allow a better comprehension of the neovascularization process and evaluation of vascular-targeted therapies in cancer. To this aim, the development of a restricted set of indexes able to describe the arrangement of a microvascular tree is eagerly required. We addressed this goal through 3D analysis of the functional microvascular network in sulfo-biotin-stained human multiple myeloma KMS-11 xenografts in NOD/SCID mice. Using image analysis, we show that amounts, spatial dispersion and spatial relationships of adjacent classes of caliber-filtered microvessels provide a near-linear graphical “fingerprint” of tumor micro-angioarchitecture. Position, slope and axial projections of this graphical outcome reflect biological features and summarize the properties of tumor micro-angioarchitecture. Notably, treatment of KMS-11 xenografts with anti-angiogenic drugs affected position and slope of the specific curves without degrading their near-linear properties. The possibility offered by this procedure to describe and quantify the 3D features of the tumor micro-angioarchitecture paves the way to the analysis of the microvascular tree in human tumor specimens at different stages of tumor progression and after pharmacologic interventions, with possible diagnostic and prognostic implications.
Collapse
|
2
|
Dual PI3K/ERK inhibition induces necroptotic cell death of Hodgkin Lymphoma cells through IER3 downregulation. Sci Rep 2016; 6:35745. [PMID: 27767172 PMCID: PMC5073341 DOI: 10.1038/srep35745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in Hodgkin lymphoma (HL) patients, thus representing attractive therapeutic targets. Here we report that the PI3K/ERK dual inhibitor AEZS-136 induced significant cell proliferation inhibition in L-540, SUP-HD1, KM-H2 and L-428 HL cell lines, but a significant increase in necroptotic cell death was observed only in two out of four cell lines (L-540 and SUP-HD1). In these cells, AEZS-136-induced necroptosis was associated with mitochondrial dysfunction and reactive oxygen species (ROS) production. JNK was activated by AEZS-136, and AEZS-136-induced necroptosis was blocked by the necroptosis inhibitor necrostatin-1 or the JNK inhibitor SP600125, suggesting that JNK activation is required to trigger necroptosis following dual PI3K/ERK inhibition. Gene expression analysis indicated that the effects of AEZS-136 were associated with the modulation of cell cycle and cell death pathways. In the cell death-resistant cell lines, AEZS-136 induced the expression of immediate early response 3 (IER3) both in vitro and in vivo. Silencing of IER3 restored sensitivity to AEZS-136-induced necroptosis. Furthermore, xenograft studies demonstrated a 70% inhibition of tumor growth and a 10-fold increase in tumor necrosis in AEZS-136-treated animals. Together, these data suggest that dual PI3K/ERK inhibition might be an effective approach for improving therapeutic outcomes in HL.
Collapse
|
3
|
Loi M, Becherini P, Emionite L, Giacomini A, Cossu I, Destefanis E, Brignole C, Di Paolo D, Piaggio F, Perri P, Cilli M, Pastorino F, Ponzoni M. sTRAIL coupled to liposomes improves its pharmacokinetic profile and overcomes neuroblastoma tumour resistance in combination with Bortezomib. J Control Release 2014; 192:157-66. [PMID: 25041999 DOI: 10.1016/j.jconrel.2014.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/26/2023]
Abstract
Neuroblastoma (NB), the most common and deadly extracranial solid tumour of childhood, represents a challenging in paediatric oncology. Soluble tumour necrosis factor (TNF)-related apoptosis-inducing ligand (sTRAIL) is a cancer cell-specific molecule exerting remarkable anti-tumour activities against paediatric malignancies both in vitro and in preclinical settings. However, due to its too fast elimination and to the undesired related side effects, the improvement of sTRAIL in vivo bioavailability and the specific delivery to the tumour is mandatory for increasing its therapeutic efficacy. In this manuscript, we developed an innovative pegylated liposomal formulation carrying the sTRAIL at the outer surface (sTRAIL-SL) with the intent to improve its serum half-life and increase its efficacy in vivo, while reducing side effects. Furthermore, the possibility to combine sTRAIL-SL with the proteasome inhibitor Bortezomib (BTZ) was investigated, being BTZ able to sensitize tumour cells toward TRAIL-induced apoptosis. We demonstrated that sTRAIL preserved and improved its anti-tumour activity when coupled to nanocarriers. Moreover, sTRAIL-SL ameliorated its PK profile in blood allowing sTRAIL to exert a more potent anti-tumour activity, which led, upon BTZ priming, to a statistically significant enhanced life spans in two models of sTRAIL-resistant NB-bearing mice. Finally, mechanistic studies indicated that the combination of sTRAIL with BTZ sensitized sTRAIL-resistant NB tumour cells to sTRAIL-induced cell death, both in vitro and in vivo, through the Akt/GSK3/β-catenin axis-dependent mechanism. In conclusion, our results suggest that sTRAIL-SL might be an efficient vehicle for sTRAIL delivery and that its use in clinic, in combination with BTZ, might represent an adjuvant strategy for the treatment of stage IV, sTRAIL-resistant, NB patients.
Collapse
Affiliation(s)
- M Loi
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - P Becherini
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - L Emionite
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - A Giacomini
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - I Cossu
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - E Destefanis
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - C Brignole
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - D Di Paolo
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - F Piaggio
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - P Perri
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - M Cilli
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - F Pastorino
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy.
| | - M Ponzoni
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy.
| |
Collapse
|
4
|
Na HJ, Hwang JY, Lee KS, Choi YK, Choe J, Kim JY, Moon HE, Kim KW, Koh GY, Lee H, Jeoung D, Won MH, Ha KS, Kwon YG, Kim YM. TRAIL negatively regulates VEGF-induced angiogenesis via caspase-8-mediated enzymatic and non-enzymatic functions. Angiogenesis 2013; 17:179-94. [PMID: 24097299 DOI: 10.1007/s10456-013-9387-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Abstract
Solid tumors supply oxygen and nutrients required for angiogenesis by producing vascular endothelial growth factor (VEGF). Thus, inhibitors of VEGF signaling abrogate tumor angiogenesis, resulting in the suppression of tumor growth and metastasis. We here investigated the effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on VEGF-induced angiogenesis. TRAIL inhibited VEGF-induced in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs) and in vivo neovascularization in chicken embryos and mice. TRAIL blocked VEGF-induced angiogenic signaling by inhibiting ERK, Src, FAK, paxillin, Akt, and eNOS. Further, TRAIL blocked intracellular Ca(2+) elevation and actin reorganization in HUVECs stimulated with VEGF, without inhibiting VEGF receptor-2 tyrosine phosphorylation. TRAIL increased caspase-8 activity, without inducing caspase-9/-3 activation and apoptosis. Moreover, TRAIL resulted in cleavage of FAK into FAK-related non-kinase-like fragments in VEGF-stimulated HUVECs, which was blocked by a caspase-8 inhibitor and cellular caspase-8-like inhibitory protein. Biochemical and pharmacological inhibition of caspase-8 and FAK blocked the inhibitory effects of TRAIL on VEGF-stimulated anti-angiogenic signaling and events. In addition, caspase-8 knockdown also suppressed VEGF-mediated signaling and angiogenesis, suggesting that procaspase-8 plays a role of a non-apoptotic modulator in VEGF-induced angiogenic signaling. These results suggest that TRAIL inhibits VEGF-induced angiogenesis by increasing caspase-8 activity and subsequently decreasing non-apoptotic signaling functions of procaspase-8, without inducing caspase-3 activation and endothelial cell cytotoxicity. These data indicate that caspase-8 may be used as an anti-angiogenic drug for solid tumors resistant to TRAIL and anti-tumor drugs.
Collapse
Affiliation(s)
- Hee-Jun Na
- Vascular Homeostasis Laboratory and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|