1
|
Brash JT, Diez-Pinel G, Rinaldi L, Castellan RFP, Fantin A, Ruhrberg C. Endothelial transcriptomic, epigenomic and proteomic data challenge the proposed role for TSAd in vascular permeability. Angiogenesis 2025; 28:21. [PMID: 40080216 PMCID: PMC11906500 DOI: 10.1007/s10456-025-09971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025]
Abstract
The vascular endothelial growth factor VEGF drives excessive vascular permeability to cause tissue-damaging oedema in neovascular and inflammatory diseases across multiple organs. Several molecular pathways have been implicated in VEGF-induced hyperpermeability, including binding of the VEGF-activated tyrosine kinase receptor VEGFR2 by the T-cell specific adaptor (TSAd) to recruit a SRC family kinase to induce junction opening between vascular endothelial cells (ECs). Inconsistent with a universal role for TSAd in permeability signalling, immunostaining approaches previously reported TSAd only in dermal and kidney vasculature. To address this discrepancy, we have mined publicly available omics data for expression of TSAd and other permeability-relevant signal transducers in multiple organs affected by VEGF-induced vascular permeability. Unexpectedly, TSAd transcripts were largely absent from EC single cell RNAseq data, whereas transcripts for other permeability-relevant signal transducers were detected readily. TSAd transcripts were also lacking from half of the EC bulk RNAseq datasets examined, and in the remaining datasets appeared at low levels concordant with models of leaky transcription. Epigenomic EC data located the TSAd promoter to closed chromatin in ECs, and mass spectrometry-derived EC proteomes typically lacked TSAd. By suggesting that TSAd is not actively expressed in ECs, our findings imply that TSAd is likely not critical for linking VEGFR2 to downstream signal transducers for EC junction opening.
Collapse
Affiliation(s)
- James T Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Guillermo Diez-Pinel
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Luca Rinaldi
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
| | - Raphael F P Castellan
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy.
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
2
|
Brash JT, Diez-Pinel G, Colletto C, Castellan RF, Fantin A, Ruhrberg C. The BulkECexplorer compiles endothelial bulk transcriptomes to predict functional versus leaky transcription. NATURE CARDIOVASCULAR RESEARCH 2024; 3:460-473. [PMID: 38708406 PMCID: PMC7615926 DOI: 10.1038/s44161-024-00436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 05/07/2024]
Abstract
Transcriptomic data can be mined to understand the molecular activity of cell types. Yet, functional genes may remain undetected in RNA sequencing (RNA-seq) experiments for technical reasons, such as insufficient read depth or gene dropout. Conversely, RNA-seq experiments may detect lowly expressed mRNAs thought to be biologically irrelevant products of leaky transcription. To represent a cell type's functional transcriptome more accurately, we propose compiling many bulk RNA-seq datasets into a compendium and applying established classification models to predict whether detected transcripts are likely products of active or leaky transcription. Here, we present the BulkECexplorer (bulk RNA-seq endothelial cell explorer) compendium of 240 bulk RNA-seq datasets from five vascular endothelial cell subtypes. This resource reports transcript counts for genes of interest and predicts whether detected transcripts are likely the products of active or leaky gene expression. Beyond its usefulness for vascular biology research, this resource provides a blueprint for developing analogous tools for other cell types.
Collapse
Affiliation(s)
- James T. Brash
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Chiara Colletto
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Biosciences, University of Milan, Milan, Italy
| | | |
Collapse
|
3
|
Shang J, Li W, Zhang H, Wang W, Liu N, Gao D, Wang F, Yan X, Gao C, Sun R, Zhang H, Ma K, Shao F, Zhang J. C-kit controls blood-brain barrier permeability by regulating caveolae-mediated transcytosis after chronic cerebral hypoperfusion. Biomed Pharmacother 2024; 170:115778. [PMID: 38141279 DOI: 10.1016/j.biopha.2023.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/25/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction plays a pivotal role in the pathology of chronic cerebral hypoperfusion (CCH)-related neurodegenerative diseases. Continuous endothelial cells (EC) that line the blood vessels of the brain are important components of the BBB to strictly control the flow of substances and maintain the homeostatic environment of the brain. However, the molecular mechanisms from the perspective of EC-induced BBB dysfunction after CCH are largely unknown. In this study, the BBB function was assessed using immunostaining and transmission electron microscopy. The EC dysfunction profile was screened by using EC enrichment followed by RNA sequencing. After identified the key EC dysfunction factor, C-kit, we used the C-kit inhibition drug (imatinib) and C-kit down-regulation method (AAV-BR1-C-kit shRNA) to verify the role of C-kit on BBB integrity and EC transcytosis after CCH. Furthermore, we also activated C-kit with stem cell factor (SCF) to observe the effects of C-kit on BBB following CCH. We explored that macromolecular proteins entered the brain mainly through EC transcytosis after CCH and caused neuronal loss. Additionally, we identified receptor tyrosine kinase C-kit as a key EC dysfunction molecule. Furthermore, the pharmacological inhibition of C-kit with imatinib counteracted BBB leakage by reducing caveolae-mediated transcytosis. Moreover, treatment with AAV-BR1-C-kit shRNA, which targets brain EC to inhibit C-kit expression, also ameliorated BBB leakage by reducing caveolae-mediated transcytosis. Furthermore, the SCF increased the permeability of the BBB by actively increasing caveolae-mediated transcytosis. This study provides evidence that C-kit is a key BBB permeability regulator through caveolae-mediated transcytosis in EC after CCH.
Collapse
Affiliation(s)
- Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Huiwen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wan Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ning Liu
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430072, China
| | - Fengyu Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Xi Yan
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Chenhao Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Haohan Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Kai Ma
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Fengmin Shao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China.
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
4
|
Whisler J, Shahreza S, Schlegelmilch K, Ege N, Javanmardi Y, Malandrino A, Agrawal A, Fantin A, Serwinski B, Azizgolshani H, Park C, Shone V, Demuren OO, Del Rosario A, Butty VL, Holroyd N, Domart MC, Hooper S, Szita N, Boyer LA, Walker-Samuel S, Djordjevic B, Sheridan GK, Collinson L, Calvo F, Ruhrberg C, Sahai E, Kamm R, Moeendarbary E. Emergent mechanical control of vascular morphogenesis. SCIENCE ADVANCES 2023; 9:eadg9781. [PMID: 37566656 PMCID: PMC10421067 DOI: 10.1126/sciadv.adg9781] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.
Collapse
Affiliation(s)
- Jordan Whisler
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, London, UK
| | | | - Nil Ege
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
- Mnemo Therapeutics, 101 Boulevard Murat, 75016 Paris, France
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Andrea Malandrino
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany, 10-14 08019 Barcelona, Spain
| | - Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milan, Italy
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd., Gloucester Road, London W2 6LD, UK
- Northeastern University London, London, E1W 1LP, UK
| | - Hesham Azizgolshani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Clara Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Victoria Shone
- Experimental Histopathology Laboratory, Francis Crick Institute, London, UK
| | - Olukunle O. Demuren
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda Del Rosario
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent L. Butty
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natalie Holroyd
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London, UK
| | | | - Steven Hooper
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London, UK
| | - Laurie A. Boyer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd., Gloucester Road, London W2 6LD, UK
| | - Graham K. Sheridan
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| | - Lucy Collinson
- Electron Microscopy Laboratory, Francis Crick Institute, London, UK
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | | | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
| | - Roger Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- 199 Biotechnologies Ltd., Gloucester Road, London W2 6LD, UK
| |
Collapse
|
5
|
Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, Djordjevic B, Szita N, Spill F, Bertazzo S, Sheridan GK, Shenoy V, Calvo F, Kamm R, Moeendarbary E. Endothelium and Subendothelial Matrix Mechanics Modulate Cancer Cell Transendothelial Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206554. [PMID: 37051804 PMCID: PMC10238207 DOI: 10.1002/advs.202206554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Indexed: 06/04/2023]
Abstract
Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Ayushi Agrawal
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Andrea Malandrino
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Biomaterials, Biomechanics and Tissue Engineering GroupDepartment of Materials Science and Engineering and Research Center for Biomedical EngineeringUniversitat Politécnica de Catalunya (UPC)08019BarcelonaSpain
| | - Soufian Lasli
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Michelle Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Somayeh Shahreza
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Bianca Serwinski
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Leila Cammoun
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ran Li
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mehdi Jorfi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Boris Djordjevic
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Fabian Spill
- School of MathematicsUniversity of BirminghamEdgbastonBirminghamB152TSUK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Graham K Sheridan
- School of Life SciencesQueen's Medical CentreUniversity of NottinghamNottinghamNG7 2UHUK
| | - Vivek Shenoy
- Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria)Santander39011Spain
| | - Roger Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
6
|
Watson SA, Javanmardi Y, Zanieri L, Shahreza S, Ragazzini R, Bonfanti P, Moeendarbary E. Integrated role of human thymic stromal cells in hematopoietic stem cell extravasation. Bioeng Transl Med 2023; 8:e10454. [PMID: 36925684 PMCID: PMC10013751 DOI: 10.1002/btm2.10454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
The human thymus is the site of T-cell maturation and induction of central tolerance. Hematopoietic stem cell (HSC)-derived progenitors are recruited to the thymus from the fetal liver during early prenatal development and from bone marrow at later stages and postnatal life. The mechanism by which HSCs are recruited to the thymus is poorly understood in humans, though mouse models have indicated the critical role of thymic stromal cells (TSC). Here, we developed a 3D microfluidic assay based on human cells to model HSC extravasation across the endothelium into the extracellular matrix. We found that the presence of human TSC consisting of cultured thymic epithelial cells (TEC) and interstitial cells (TIC) increases the HSC extravasation rates by 3-fold. Strikingly, incorporating TEC or TIC alone is insufficient to perturb HSC extravasation rates. Furthermore, we identified complex gene expressions from interactions between endothelial cells, TEC and TIC modulates the HSCs extravasation. Our results suggest that comprehensive signaling from the complex thymic microenvironment is crucial for thymus seeding and that our system will allow manipulation of these signals with the potential to increase thymocyte migration in a therapeutic setting.
Collapse
Affiliation(s)
- Sara A. Watson
- Department of Mechanical EngineeringUCLLondonUK
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
| | | | - Luca Zanieri
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
- Institute of Immunity and TransplantationDivision of Infection & Immunity, UCLLondonUK
| | | | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
- Institute of Immunity and TransplantationDivision of Infection & Immunity, UCLLondonUK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
- Institute of Immunity and TransplantationDivision of Infection & Immunity, UCLLondonUK
| | | |
Collapse
|