1
|
Picozzi C, Clagnan E, Musatti A, Rollini M, Brusetti L. Characterization of Two Zymomonas mobilis Wild Strains and Analysis of Populations Dynamics during Their Leavening of Bread-like Doughs. Foods 2022; 11:foods11182768. [PMID: 36140896 PMCID: PMC9497783 DOI: 10.3390/foods11182768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
Two Zymomonas mobilis wild strains (UMB478 and 479) isolated from water kefir were characterized for their biomass production levels and leavening performance when used as the inoculum of a real bread-like dough formulation. The obtained baked product would be consumable by people with adverse responses to Saccharomyces cerevisiae. In liquid cultures, the two strains reached similar biomass concentration (0.7 g CDW/L). UMB479 showed an interesting resistance to NaCl (MBC 30 g/L), that may be useful in the bakery sector. When inoculated in doughs, UMB479 produced the maximum dough volume (650 mL) after 5 h, glucose was almost consumed and 1 g/100 g of ethanol produced, +200% respective to UMB478. Using S. cerevisiae for comparison purposes, the dough doubled its volume fast, in only 2 h, but reached a final level of 575 mL, lower than that achieved by Z. mobilis. The analysis of bacterial and fungal population dynamics during dough leavening was performed through the Automated Ribosomal Intergenic Spacer Analysis (ARISA); doughs leavened by UMB479 showed an interesting decrease in fungal richness after leavening. S. cerevisiae, instead, created a more complex fungal community, similar before and after leavening. Results will pave the way for the use of Z. mobilis UMB479 in commercial yeast-free leavened products.
Collapse
Affiliation(s)
- Claudia Picozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Elisa Clagnan
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Alida Musatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Manuela Rollini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-0250319150
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
2
|
Glamoclija M, Ramirez S, Sirisena K, Widanagamage I. Subsurface Microbial Ecology at Sediment-Groundwater Interface in Sulfate-Rich Playa; White Sands National Monument, New Mexico. Front Microbiol 2019; 10:2595. [PMID: 31781077 PMCID: PMC6861310 DOI: 10.3389/fmicb.2019.02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
The hypersaline sediment and groundwater of playa lake, Lake Lucero, at the White Sands National Monument in New Mexico were examined for microbial community composition, geochemical gradients, and mineralogy during the dry season along a meter and a half depth profile of the sediment vs. the groundwater interface. Lake Lucero is a highly dynamic environment, strongly characterized by the capillary action of the groundwater, the extreme seasonality of the climate, and the hypersalinity. Sediments are predominantly composed of gypsum with minor quartz, thenardite, halite, quartz, epsomite, celestine, and clays. Geochemical analysis has revealed the predominance of nitrates over ammonium in all of the analyzed samples, indicating oxygenated conditions throughout the sediment column and in groundwater. Conversely, the microbial communities are primarily aerobic, gram-negative, and are largely characterized by their survival adaptations. Halophiles and oligotrophs are ubiquitous for all the samples. The very diverse communities contain methanogens, phototrophs, heterotrophs, saprophytes, ammonia-oxidizers, sulfur-oxidizers, sulfate-reducers, iron-reducers, and nitrifiers. The microbial diversity varied significantly between groundwater and sediment samples as their temperature adaptation inferences that revealed potential psychrophiles inhabiting the groundwater and thermophiles and mesophiles being present in the sediment. The dynamism of this environment manifests in the relatively even character of the sediment hosted microbial communities, where significant taxonomic distinctions were observed. Therefore, sediment and groundwater substrates are considered as separate ecological entities. We hope that the variety of the discussed playa environments and the microorganisms may be considered a useful terrestrial analog providing valuable information to aid future astrobiological explorations.
Collapse
Affiliation(s)
- Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Steven Ramirez
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Kosala Sirisena
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, United States.,Department of Environmental Technology, Faculty of Technology, University of Colombo, Colombo, Sri Lanka
| | - Inoka Widanagamage
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Department of Geology and Geological Engineering, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
3
|
Lumactud R, Fulthorpe RR. Endophytic Bacterial Community Structure and Function of Herbaceous Plants From Petroleum Hydrocarbon Contaminated and Non-contaminated Sites. Front Microbiol 2018; 9:1926. [PMID: 30190710 PMCID: PMC6115521 DOI: 10.3389/fmicb.2018.01926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023] Open
Abstract
Bacterial endophytes (BEs) are non-pathogenic residents of healthy plant tissues that can confer benefits to plants. Many Bacterial endophytes have been shown to contribute to plant growth and health, alleviation of plant stress and to in-planta contaminant-degradation. This study examined the endophytic bacterial communities of plants growing abundantly in a heavily hydrocarbon contaminated site, and compared them to those found in the same species at a non-contaminated. We used culture- dependent and independent methods to characterize the community structure, hydrocarbon degrading capabilities, and plant growth promoting traits of cultivable endophytes isolated from Achillea millefolium, Solidago Canadensis, and Daucus carota plants from these two sites. Culture- dependent and independent analyses revealed class Gammaproteobacteria predominated in all the plants regardless of the presence of petroleum hydrocarbon, with Pantoea spp. as largely dominant. It was interesting to note a >50% taxonomic overlap (genus level) of 16s rRNA high throughput amplicon sequences with cultivable endophytes. PERMANOVA analysis of TRFLP fragments revealed significant structural differences between endophytic bacterial communities from hydrocarbon-contaminated and non-contaminated soils-however, there was no marked difference in their functional capabilities. Pantoea spp. demonstrated plant beneficial characteristics, such as P solubilization, indole-3-acetic acid production and presence of 1-aminocyclopropane-1-carboxylate deaminase. Our findings reveal that functional capabilities of bacterial isolates being examined were not influenced by the presence of contamination; and that the stem endosphere supports ubiquitous BEs that were consistent throughout plant hosts and sites.
Collapse
Affiliation(s)
- Rhea Lumactud
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Roberta R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
4
|
Zimmermann J, Musyoki MK, Cadisch G, Rasche F. Biocontrol agent Fusarium oxysporum f.sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres. FUNGAL ECOL 2016; 23:1-10. [PMID: 27721900 PMCID: PMC5045157 DOI: 10.1016/j.funeco.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We studied the effects of Fusarium oxysporum f.sp. strigae (Fos), a soil-borne biocontrol agent (BCA) against Striga hermonthica, on total fungal and arbuscular mycorrhizal fungal (AMF) taxa in rhizospheres of maize in both clayey and sandy soil. Effects of Fos-BCA ‘Foxy-2’ were evaluated against (1) S. hermonthica presence, and (2) organic fertilization with Tithonia diversifolia residues at 14, 28 and 42 d after ‘Foxy-2’ inoculation, via DNA-based quantitative PCR and TRFLP fingerprinting. In both soils, ‘Foxy-2’ occasionally promoted total fungal abundance, while the community composition was mainly altered by T. diversifolia and S. hermonthica. Notably, ‘Foxy-2’ stimulated AMF Gigaspora margarita abundance, while G. margarita was suppressed by S. hermonthica. Total fungal and AMF abundance were promoted by T. diversifolia residues. In conclusion, ‘Foxy-2’ resulted in no adverse effects on indigenous rhizosphere fungal communities substantiating its environmental safety as BCA against S. hermonthica. ‘Foxy-2’ promoted AMF Gigaspora margarita abundance. Total fungal abundance was only transiently stimulated by ‘Foxy-2’. Contrastingly, G. margarita abundance was suppressed by Striga hermonthica. ‘Foxy-2’ induced only a minor alteration of fungal community composition. ‘Foxy-2’ effects were generally superimposed by organic fertilization.
Collapse
Affiliation(s)
- Judith Zimmermann
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Mary K Musyoki
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Georg Cadisch
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Musyoki MK, Cadisch G, Zimmermann J, Wainwright H, Beed F, Rasche F. Soil properties, seasonality and crop growth stage exert a stronger effect on rhizosphere prokaryotes than the fungal biocontrol agent Fusarium oxysporum f.sp. strigae. APPLIED SOIL ECOLOGY : A SECTION OF AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2016; 105:126-136. [PMID: 31007391 PMCID: PMC6472298 DOI: 10.1016/j.apsoil.2016.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fusarium oxysporum f.sp. strigae (Fos) is an effective biocontrol agent (BCA) against the parasitic weed Striga hermonthica. It acts in the rhizosphere of several tropical cereals, where it may interfere with indigenous microbial populations. To test this impact, we assessed in a 2-season field experiment at two contrasting tropical agro-ecological sites the response of nitrifying and total indigenous prokaryotic communities in the rhizosphere of maize to the exposure of the Fos-BCA "Foxy-2". At early leaf development (EC30), flowering (EC60) and senescence (EC90) stage of maize, rhizosphere samples were obtained and subjected to community analysis of bacterial and archaeal amoA (ammonia monooxigenase) (AOB, AOA) and 16S rRNA genes. Abundance and community composition of all studied genes were predominantly influenced by soil type, crop growth stage and seasonality. No major effect of "Foxy-2" was found. Notably, total archaeal community relative to bacteria dominated in the clayey soil which was linked to its strong soil organic carbon (SOC) background. Compared to bacterial nitrifiers, domination of nitrifying archaea increased towards senescence stage which was explained by biochemical differences in organic resource availability between the crop growth stages. During the short rain season, the higher archaeal abundance was mainly driven by increased availability of organic substrates, i.e., extractable organic carbon. Our findings suggested that archaea had greater rhizosphere competence than "Foxy-2" in soils with higher clay and SOC contents. We verified that "Foxy-2" in maize rhizospheres is compatible with nitrifying prokaryotes under the given environments, in particular in clayey soils dominated by archaea.
Collapse
Affiliation(s)
- Mary K. Musyoki
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Georg Cadisch
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Judith Zimmermann
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Henry Wainwright
- The Real IPM Company, P.O. Box 4001-01002, Madaraka, Thika, Kenya
| | - Fen Beed
- AVRDC—The World Vegetable Center, East and Southeast Asia, P.O. Box 1010 (Kasetsart), Bangkok 10903, Thailand
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
- Corresponding author.
| |
Collapse
|
6
|
Zimmermann J, Musyoki MK, Cadisch G, Rasche F. Proliferation of the biocontrol agent Fusarium oxysporum f. sp. strigae and its impact on indigenous rhizosphere fungal communities in maize under different agro-ecologies. RHIZOSPHERE 2016; 1:17-25. [PMID: 27928553 PMCID: PMC5125437 DOI: 10.1016/j.rhisph.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
Our objectives were to (1) monitor the proliferation of the biocontrol agent (BCA) Fusarium oxysporum f. sp. strigae strain "Foxy-2", an effective soil-borne BCA against the parasitic weed Striga hermonthica, in the rhizosphere of maize under different agro-ecologies, and (2) investigate its impact on indigenous rhizosphere fungal community abundance and composition. Field experiments were conducted in Busia and Homa Bay districts in western Kenya during two cropping seasons to account for effects of soil type, climate, growth stage and seasonality. Maize seeds were coated with or without "Foxy-2" and soils were artificially infested with S. hermonthica seeds. One treatment with nitrogen rich organic residues (Tithonia diversifolia) was established to compensate hypothesized resource competition between "Foxy-2" and the indigenous fungal community. Rhizosphere soil samples collected at three growth stages (i.e., EC30, EC60, EC90) of maize were subjected to abundance measurement of "Foxy-2" and total indigenous fungi using quantitative polymerase chain reaction (qPCR) analysis. Terminal restriction fragment length polymorphism (TRFLP) analysis was used to assess potential alterations in the fungal community composition in response to "Foxy-2" presence. "Foxy-2" proliferated stronger in the soils with a sandy clay texture (Busia) than in those with a loamy sand texture (Homa Bay) and revealed slightly higher abundance in the second season. "Foxy-2" had, however, only a transient suppressive effect on total indigenous fungal abundance which ceased in the second season and was further markedly compensated after addition of T. diversifolia residues. Likewise, community structure of the indigenous fungal community was mainly altered by maize growth stages, but not by "Foxy-2". In conclusion, no adverse effects of "Foxy-2" inoculation on indigenous fungal rhizosphere communities were observed corroborating the safety of this BCA under the given agro-ecologies.
Collapse
Affiliation(s)
| | | | | | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Lumactud R, Shen SY, Lau M, Fulthorpe R. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination. Front Microbiol 2016; 7:755. [PMID: 27252685 PMCID: PMC4878295 DOI: 10.3389/fmicb.2016.00755] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/04/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.
Collapse
Affiliation(s)
- Rhea Lumactud
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| | - Shu Yi Shen
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| | - Mimas Lau
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| | - Roberta Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| |
Collapse
|
8
|
Lang JM, Erb R, Pechal JL, Wallace JR, McEwan RW, Benbow ME. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals. Microorganisms 2016; 4:microorganisms4010001. [PMID: 27681897 PMCID: PMC5029506 DOI: 10.3390/microorganisms4010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI) of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses) and epilithic (biofilms on unglazed ceramic tiles) communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.
Collapse
Affiliation(s)
- Jennifer M Lang
- Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA.
| | - Racheal Erb
- Department of Biology, Millersville University, Millersville, PA 17551, USA.
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, 243 Natural Science Building, 288 Farm Lane, East Lansing, MI 48824, USA.
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA 17551, USA.
| | - Ryan W McEwan
- Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA.
| | - Mark Eric Benbow
- Department of Entomology, Michigan State University, 243 Natural Science Building, 288 Farm Lane, East Lansing, MI 48824, USA.
- Department of Osteopathic Medical Specialties, Michigan State University, 243 Natural Science Building, 288 Farm Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Perez-Fernandez CA, Iriarte M, Hinojosa-Delgadillo W, Veizaga-Salinas A, Cano RJ, Rivera-Perez J, Toranzos GA. First insight into microbial diversity and ion concentration in the Uyuni salt flat, Bolivia. CARIBB J SCI 2016. [DOI: 10.18475/cjos.v49i1.a6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:480170. [PMID: 24995302 PMCID: PMC4065744 DOI: 10.1155/2014/480170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022]
Abstract
The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.
Collapse
|
11
|
Al Ashhab A, Herzberg M, Gillor O. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition. WATER RESEARCH 2014; 50:341-349. [PMID: 24231030 DOI: 10.1016/j.watres.2013.10.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede-Boqer Campus, 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede-Boqer Campus, 84990, Israel.
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede-Boqer Campus, 84990, Israel.
| |
Collapse
|
12
|
Sipilä TP, Keskinen AK, Åkerman ML, Fortelius C, Haahtela K, Yrjälä K. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME JOURNAL 2008; 2:968-81. [DOI: 10.1038/ismej.2008.50] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|