1
|
Yang TT, Zhang HW, Wang J, Li XY, Li X, Su ZC. High bioremediation potential of strain Chenggangzhangella methanolivorans CHL1 for soil polluted with metsulfuron-methyl or tribenuron-methyl in a pot experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4731-4738. [PMID: 32951166 DOI: 10.1007/s11356-020-10825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination caused by long-term application of metsulfuron-methyl and tribenuron-methyl has become an issue of increasing concern. In our previous study, strain Chenggangzhangella methanolivorans CHL1, capable of efficiently degrading sulfonylurea herbicides, was isolated. Here, the bioremediation potential of strain CHL1 was assessed for soil polluted with metsulfuron-methyl or tribenuron-methyl in a pot experiment. The growth parameters of waxy maize were measured on day 21 of the pot experiment. Additionally, the residues of metsulfuron-methyl and tribenuron-methyl in soils were analyzed, and the soil microbial community was investigated using a phospholipid fatty acids (PLFAs) method on days 1, 7, 14, and 21. The results indicated that strain CHL1 greatly accelerated the degradation of metsulfuron-methyl and tribenuron-methyl in soils. The degradation rates in the treatments inoculated with strain CHL1were all more than 91% after 7 days, significantly higher than the 25-36% degradation measured in non-inoculated treatments. Furthermore, strain CHL1 reduced the negative effects of tribenuron-methyl and metsulfuron-methyl on waxy maize growth, especially the primary root length. Moreover, inoculation with strain CHL1 also reduced the effects of tribenuron-methyl and metsulfuron-methyl on soil microbial biomass, diversity, and community structure. The present study demonstrates that strain CHL1 has great potential application to remediate soil contaminated with metsulfuron-methyl or tribenuron-methyl.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Hui-Wen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Shenyang Research Institute of Chemical Industry Co. Ltd., Shenyang, 110021, China
| | - Xin-Yu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhen-Cheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
2
|
Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:314-325. [PMID: 31153078 DOI: 10.1016/j.scitotenv.2019.05.230] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
Conventional agriculture still relies on the general use of agrochemicals (herbicides, fungicides and insecticides) to control various pests (weeds, fungal pathogens and insects), to ensure the yield of crop and to feed a constantly growing population. The generalized use of pesticides in agriculture leads to the contamination of soil and other connected environmental resources. The persistence of pesticide residues in soil is identified as a major threat for in-soil living organisms that are supporting an important number of ecosystem services. Although authorities released pesticides on the market only after their careful and thorough evaluation, the risk assessment for in-soil living organisms is unsatisfactory, particularly for microorganisms for which pesticide toxicity is solely considered by one global test measuring N mineralization. Recently, European Food Safety Authority (EFSA) underlined the lack of standardized methods to assess pesticide ecotoxicological effects on soil microorganisms. Within this context, there is an obvious need to develop innovative microbial markers sensitive to pesticide exposure. Biomarkers that reveal direct effects of pesticides on microorganisms are often viewed as the panacea. Such biomarkers can only be developed for pesticides having a mode of action inhibiting a specific enzyme not only found in the targeted organisms but also in microorganisms which are considered as "non-target organisms" by current regulations. This review explores possible ways of innovation to develop such biomarkers for herbicides. We scanned the herbicide classification by considering the mode of action, the targeted enzyme and the ecotoxicological effects of each class of active substance in order to identify those that can be tracked using sensitive microbial markers.
Collapse
Affiliation(s)
- Clémence Thiour-Mauprivez
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Christophe Calvayrac
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
3
|
Petric I, Karpouzas DG, Bru D, Udikovic-Kolic N, Kandeler E, Djuric S, Martin-Laurent F. Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4320-4333. [PMID: 26517995 DOI: 10.1007/s11356-015-5645-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
The action mode of sulfonylurea herbicides is the inhibition of the acetohydroxyacid synthase (AHAS) required for the biosynthesis of amino acids valine and isoleucine in plants. However, this enzyme is also present in a range of non-targeted organisms, among which soil microorganisms are known for their pivotal role in ecosystem functioning. In order to assess microbial toxicity of sulfonylurea herbicide nicosulfuron (NS), a tiered microcosm (Tier I) to field (Tier II) experiment was designed. Soil bacteria harboring AHAS enzyme tolerant to the herbicide nicosulfuron were enumerated, isolated, taxonomically identified, and physiologically characterized. Results suggested that application of nicosulfuron drives the selection towards NS-tolerant bacteria, with increasing levels of exposure inducing an increase in their abundance and diversity in soil. Tolerance to nicosulfuron was shown to be widespread among the microbial community with various bacteria belonging to Firmicutes (Bacillus) and Actinobacteria (Arthrobacter) phyla representing most abundant and diverse clusters. While Arthrobacter bacterial population dominated community evolved under lower (Tier II) nicosulfuron selection pressure, it turns out that Bacillus dominated community evolved under higher (Tier I) nicosulfuron selection pressure. Different NS-tolerant bacteria likewise showed different levels of sensitivity to the nicosulfuron estimated by growth kinetics on nicosulfuron. As evident, Tier I exposure allowed selection of populations able to better cope with nicosulfuron. One could propose that sulfonylureas-tolerant bacterial community could constitute a useful bioindicator of exposure to these herbicides for assessing their ecotoxicity towards soil microorganisms.
Collapse
Affiliation(s)
- Ines Petric
- Rudjer Boskovic Institute, Division for Marine and Environmental Research, HR-10002, Zagreb, Croatia.
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aeolou Str, 412 21, Larisa, Greece
| | - David Bru
- INRA, UMR 1347 Agroécologie, BP 86510, 21065, Dijon CEDEX, France
| | - Nikolina Udikovic-Kolic
- Rudjer Boskovic Institute, Division for Marine and Environmental Research, HR-10002, Zagreb, Croatia
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Emil-Wolff-Str. 27, 70593, Stuttgart, Germany
| | - Simonida Djuric
- University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
| | | |
Collapse
|
4
|
Song C, Mazzola M, Cheng X, Oetjen J, Alexandrov T, Dorrestein P, Watrous J, van der Voort M, Raaijmakers JM. Molecular and chemical dialogues in bacteria-protozoa interactions. Sci Rep 2015; 5:12837. [PMID: 26246193 PMCID: PMC4542665 DOI: 10.1038/srep12837] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments.
Collapse
Affiliation(s)
- Chunxu Song
- 1] Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, the Netherlands [2] Microbial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands
| | - Mark Mazzola
- USDA-ARS, 1104 N. Western Ave., Wenatchee, Washington 98801
| | - Xu Cheng
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Janina Oetjen
- Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany
| | - Theodore Alexandrov
- 1] MALDI Imaging Lab, University of Bremen, 28359 Bremen, Germany [2] Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany [3] SCiLS GmbH, 28359 Bremen, Germany [4] Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego , San Diego, California 92093, United States [5] Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego , San Diego, California 92093, United States
| | - Jeramie Watrous
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego , San Diego, California 92093, United States
| | - Menno van der Voort
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Jos M Raaijmakers
- 1] Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, the Netherlands [2] Microbial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands
| |
Collapse
|
5
|
Martin-Laurent F, Kandeler E, Petric I, Djuric S, Karpouzas DG. ECOFUN-MICROBIODIV: an FP7 European project for developing and evaluating innovative tools for assessing the impact of pesticides on soil functional microbial diversity--towards new pesticide registration regulation? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1203-1205. [PMID: 23224507 DOI: 10.1007/s11356-012-1368-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
|
6
|
Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Antimicrob Agents Chemother 2012; 57:1513-7. [PMID: 23263008 DOI: 10.1128/aac.02327-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy.
Collapse
|
7
|
Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012; 8:e1002784. [PMID: 22792073 PMCID: PMC3390384 DOI: 10.1371/journal.pgen.1002784] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire. We sequenced the genomes of seven strains of the Pseudomonas fluorescens group that colonize plant surfaces and function as biological control agents, protecting plants from disease. In this study, we demonstrated the genomic diversity of the group by comparing these strains to each other and to three other strains that were sequenced previously. Only about half of the genes in each strain are present in all of the other strains, and each strain has hundreds of unique genes that are not present in the other genomes. We mapped the genes that contribute to biological control in each genome and found that most of the biological control genes are in the variable regions of the genome, which are not shared by all of the other strains. This finding is consistent with our knowledge of the distinctive biology of each strain. Finally, we looked for new genes that are likely to confer antimicrobial traits needed to suppress plant pathogens, but have not been identified previously. In each genome, we discovered many of these new genes, which provide avenues for future discovery of new traits with the potential to manage plant diseases in agriculture or natural ecosystems.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|