1
|
Sánchez-Rey LE, Moreno-Sarmiento N, Grijalba-Bernal EP, Quiroga-Cubides G. Physiological response of Metarhizium rileyi with linoleic acid supplementation. Fungal Biol 2024; 128:1827-1835. [PMID: 38876535 DOI: 10.1016/j.funbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Metarhizium rileyi has a broad biocontrol spectrum but is highly sensitive to abiotic factors. A Colombian isolate M. rileyi Nm017 has shown notorious potential against Helicoverpa zea. However, it has a loss of up to 22 % of its conidial germination after drying, which limits its potential as a biocontrol agent and further commercialization. Conidial desiccation resistance can be enhanced by nutritional supplements, which promotes field adaptability and facilitates technological development as a biopesticide. In this study, the effect of culture medium supplemented with linoleic acid on desiccation tolerance in Nm017 conidia was evaluated. Results showed that using a 2 % linoleic acid-supplemented medium increased the relative germination after drying by 41 % compared to the control treatment, without affecting insecticidal activity on H. zea. Also, the fungus increased the synthesis of trehalose, glucose, and erythritol during drying, independently of linoleic acid use. Ultrastructural analyses of the cell wall-membrane showed a loss of thickness by 22 % and 25 %, in samples obtained from 2 % linoleic acid supplementation and the control, respectively. Regarding its morphological characteristics, conidia inner area from both treatments did not change after drying. However, conidia from the control had a 24 % decrease in length/width ratio, whereas there was no alteration in conidia from acid linoleic. The average value of dry conidia elasticity coefficient from linoleic acid treatment was 200 % above the control. Medium supplementation with linoleic acid is a promising fermentation strategy for obtaining more tolerant conidia without affecting production and biocontrol parameters, compatible solutes synthesis, or modifying its cell configuration.
Collapse
Affiliation(s)
- Leidy Esther Sánchez-Rey
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 #26-85 Edificio Manuel Ancizar, Bogotá, Colombia
| | - Nubia Moreno-Sarmiento
- Instituto de Biotecnología, Universidad Nacional de Colombia, Carrera 45 #26-85 Edificio Manuel Ancizar, Bogotá, Colombia
| | - Erika Paola Grijalba-Bernal
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia
| | - Ginna Quiroga-Cubides
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia.
| |
Collapse
|
2
|
Li F, Zhang J, Zhong H, Yu K, Chen J. Genome-Wide Identification of SNARE Family Genes and Functional Characterization of an R-SNARE Gene BbSEC22 in a Fungal Insect Pathogen Beauveria bassiana. J Fungi (Basel) 2024; 10:393. [PMID: 38921379 PMCID: PMC11204939 DOI: 10.3390/jof10060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central components of the machinery mediating cell membrane fusion and intracellular vesicular trafficking in eukaryotic cells, and have been well-documented to play critical roles in growth, development, and pathogenesis in the filamentous fungal plant pathogens. However, little is known about the contributions of SNAREs to the physiology and biocontrol potential in entomopathogenic filamentous fungi. Here, a genome-wide analysis of SNARE genes was performed taking advantage of the available whole genome sequence of Beauveria bassiana, a classical entomopathogenic fungus. Based on the compared genomic method, 22 genes encoding putative SNAREs were identified from the whole genome of B. bassiana, and were classified into four groups (7 Qa-, 4 Qb-, 6 Qc-, and 5 R-SNAREs) according to the conserved structural features of their encoding proteins. An R-SNARE encoding gene BbSEC22 was further functionally characterized by gene disruption and complementation. The BbSEC22 null mutant showed a fluffy appearance in mycelial growth and an obvious lag in conidial germination. The null mutant also exhibited significantly increased sensitivity to oxidative stress and cell wall perturbing agents and reduced the yield of conidia production by 43.1% compared with the wild-type strain. Moreover, disruption of BbSEC22 caused a significant decrease in conidial virulence to Spodoptera litura larvae. Overall, our results provide an overview of vesicle trafficking in B. bassiana and revealed that BbSec22 was a multifunctional protein associated with mycelial growth, sporulation, conidial germination, stress tolerance, and insecticidal virulence.
Collapse
Affiliation(s)
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| | | | | | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| |
Collapse
|
3
|
Zhang JG, Zhang K, Xu SY, Ying SH, Feng MG. Essential Role of WetA, but No Role of VosA, in Asexual Development, Conidial Maturation and Insect Pathogenicity of Metarhizium robertsii. Microbiol Spectr 2023; 11:e0007023. [PMID: 36916980 PMCID: PMC10100841 DOI: 10.1128/spectrum.00070-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Conidial maturation, which is crucial for conidial quality, is controlled by the asexual development activator WetA and the downstream, velvety protein VosA in Aspergillus. Their orthologs have proved functional in conidial quality control of Beauveria bassiana, as seen in Aspergillus, but are functionally unexplored, in Metarhizium robertsii, another hypocrealean insect pathogen. Here, WetA and VosA prove essential and nonessential for M. robertsii's life cycle, respectively. Disruption of wetA increased hyphal sensitivity to oxidative stress and Congo red-induced cell wall stress, but had little impact on radial growth. The ΔwetA mutant was severely compromised in conidiation capacity and conidial quality, which was featured by slower germination, decreased UV resistance, reduced hydrophobicity, and deformed hydrophobin rodlet bundles that were assembled onto conidial coat. The mutant's virulence was greatly attenuated via normal infection due to a blockage of infection-required cellular processes. All examined phenotypes were unaffected for the ΔvosA mutant. Intriguingly, mannitol was much less accumulated in the 7- and 15-day-old cultures of ΔwetA and ΔvosA than of control strains, while accumulated trehalose was not detectable at all, revealing little a link of intracellular polyol accumulation to conidial maturation. Transcriptomic analysis revealed differential regulation of 160 genes (up/down ratio: 72:88) in ΔwetA. These genes were mostly involved in cellular component, biological process, and molecular function but rarely associated with asexual development. Conclusively, WetA plays a relatively conserved role in M. robertsii's spore surface structure, and also a differentiated role in some other cellular processes associated with conidial maturation. VosA is functionally redundant in M. robertsii unlike its ortholog in B. bassiana. IMPORTANCE WetA and VosA regulate conidiation and conidial maturation required for the life cycle of Beauveria bassiana, like they do in Aspergillus, but remain functionally unexplored in Metarhizium robertsii, another hypocrealean pathogen considered to have evolved insect pathogenicity ~130 million years later than B. bassiana. This study reveals a similar role of WetA ortholog in asexual development, conidial maturation, and insect pathogenicity, and also its distinctive role in mediating some other conidial maturation-related cellular events, but has functional redundancy of VosA in M. robertsii. The maturation process vital for conidial quality proves dependent on a role of WetA in spore wall assembly but is independent of its role in intracellular polyol accumulation. Transcriptomic analysis reveals a link of WetA to 160 genes involved in cellular component, biological process, and molecular function. Our study unveils that M. robertsii WetA or VosA is functionally differential or different from those learned in B. bassiana and other ascomycetes.
Collapse
Affiliation(s)
- Jin-Guan Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Yuan Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Mseddi J, Ben Farhat-Touzri D, Azzouz H. Selection and characterization of thermotolerant Beauveria bassiana isolates and with insecticidal activity against the cotton-melon aphid Aphis gossypii (Glover) (Hemiptera: Aphididae). PEST MANAGEMENT SCIENCE 2022; 78:2183-2195. [PMID: 35191162 DOI: 10.1002/ps.6844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/07/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cotton-melon aphid Aphis gossypii (Glover) causes severe damage mainly to cucurbits. Twenty-two Beauveria sp. isolates were simultaneously assessed for their pathogenicity and heat tolerance. The selected isolates were identified molecularly and characterized in terms of conidial germination rate, mycelial growth, conidial yield and endophytic activity. RESULTS Screening bioassays showed that the B. bassiana isolates B3, B7, B9 and B12 were the most toxic, inducing mortality equal to or slightly higher than the commercialized strain B. bassiana BNat (70.7%). Median lethal concentration (LC50 ) bioassays revealed that only isolate B12 had a significantly lower LC50 value (5.4 × 105 conidia ml-1 ) than strain BNat (5 × 106 conidia ml-1 ). The heat tolerance screening test (1 h of exposure to 45°C) allowed us to select isolates B3, B7, B9 and B12 with germination rates of 57.5% to 80.1% after 24 h incubation at 25°C, all significantly higher than strain BNat (22.1%). The germination rates of all isolates decreased significantly after 2 h of exposure to 45°C, with the exception of isolate B12 which displayed the highest thermotolerance (72% germination). The four selected isolates were able to endophytically colonize cucumber leaves when applied to the foliage. Inoculation of cucumber plants with isolate B12 did not affect cucumber plant growth. However, several plant growth parameters were improved 5 weeks after root inoculation. CONCLUSION On the basis of its potent toxicity and thermotolerance, isolate B12 is a good candidate for further development as a biopesticide for use in integrated pest management strategies for aphid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihen Mseddi
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | | | - Hichem Azzouz
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
5
|
Nguyen S, Truong JQ, Bruning JB. Targeting Unconventional Pathways in Pursuit of Novel Antifungals. Front Mol Biosci 2021; 7:621366. [PMID: 33511160 PMCID: PMC7835888 DOI: 10.3389/fmolb.2020.621366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
The impact of invasive fungal infections on human health is a serious, but largely overlooked, public health issue. Commonly affecting the immunocompromised community, fungal infections are predominantly caused by species of Candida, Cryptococcus, and Aspergillus. Treatments are reliant on the aggressive use of pre-existing antifungal drug classes that target the fungal cell wall and membrane. Despite their frequent use, these drugs are subject to unfavorable drug-drug interactions, can cause undesirable side-effects and have compromised efficacy due to the emergence of antifungal resistance. Hence, there is a clear need to develop novel classes of antifungal drugs. A promising approach involves exploiting the metabolic needs of fungi by targeted interruption of essential metabolic pathways. This review highlights potential antifungal targets including enolase, a component of the enolase-plasminogen complex, and enzymes from the mannitol biosynthesis and purine nucleotide biosynthesis pathways. There has been increased interest in the enzymes that comprise these particular pathways and further investigation into their merits as antifungal targets and roles in fungal survival and virulence are warranted. Disruption of these vital processes by targeting unconventional pathways with small molecules or antibodies may serve as a promising approach to discovering novel classes of antifungals.
Collapse
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jia Q Truong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Ianutsevich EA, Danilova OA, Tereshina VM. Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
7
|
Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Appl Microbiol Biotechnol 2020; 104:5711-5724. [PMID: 32405755 DOI: 10.1007/s00253-020-10659-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.
Collapse
|
8
|
Ming X, Wang Y, Sui Y. Pretreatment of the Antagonistic Yeast, Debaryomyces hansenii, With Mannitol and Sorbitol Improves Stress Tolerance and Biocontrol Efficacy. Front Microbiol 2020; 11:601. [PMID: 32351472 PMCID: PMC7174499 DOI: 10.3389/fmicb.2020.00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022] Open
Abstract
The effect of exogenous mannitol and sorbitol on the viability of the antagonist yeast, Debaryomyces hansenii, when exposed to oxidative and high-temperature stress was determined. Results indicated that both the 0.1 M mannitol (MT) and 0.1 M sorbitol (ST) treatments improved the tolerance of D. hansenii to subsequent oxidative and high-temperature stress. MT or ST cells had a significantly higher level of cell survival, elevated the gene expression of catalase 1 (CAT1) and copper-zinc superoxide dismutase (SOD1), as well as the corresponding enzyme activity. Treated cells also exhibited a lower accumulation of intracellular reactive oxygen species (ROS), and a higher content of intracellular mannitol and sorbitol relative to non-treated, control yeast cells, when exposed to a subsequent oxidative (30 mM H2O2) or heat (40.5°C) stress for 30 min. Additionally, MT and ST yeast exhibited a higher growth rate in kiwifruit wounds, and a greater ability to inhibit postharvest blue mold (Penicillium expansum) and gray mold (Botrytis cinerea) infections. The present study indicates that increased antioxidant response induced by mannitol and sorbitol in D. hansenii can enhance stress tolerance and biocontrol performance.
Collapse
Affiliation(s)
- Xiaobing Ming
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
9
|
The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation. Appl Microbiol Biotechnol 2017; 102:1343-1355. [PMID: 29275430 DOI: 10.1007/s00253-017-8703-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
Abstract
Histone lysine acetylation orchestrates transcriptional activity essential for diverse cellular events across organisms, but it remains poorly understood how an acetylated lysine affects cellular functions in filamentous fungal pathogens. Here, we show the functions of a histone acetyltransferase that is phylogenetically close to Mst2 in fission yeast and specifically acetylates histone H3K14 in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest management. Deletion of mst2 in B. bassiana resulted in moderate growth defects on rich and minimal media, delayed conidiation, and drastic reduction (75%) in conidiation capacity under normal culture conditions. The Δmst2 conidia suffered slower germination, decreased hydrophobicity, attenuated virulence, and reduced thermotolerance and UV-B resistance. The Δmst2 mutant also displayed increased sensitivities to DNA damaging, oxidative, cell wall perturbing, and osmotic stresses during conidial germination and colony growth at optimal 25 °C. Intriguingly, the phenotypic changes were accompanied with transcriptional repression of related gene sets, which are required for asexual development and conidial hydrophobicity or cascaded for CWI and HOG pathways, and encode the families of superoxide dismutases (SOD), catalases, heat-shock proteins, and trehalose or mannitol-metabolizing enzymes. Consequently, total SOD and catalase activities, trehalose and mannitol contents, and hydrophobicity were remarkably lowered in the hyphal cells or conidia of Δmst2. All of these changes were well restored by targeted mst2 complementation. Our results indicate that Mst2 enables to mediate global gene transcription and/or post-translation through H3K14 acetylation and plays an essential role in sustaining the biological control potential of B. bassiana against arthropod pests.
Collapse
|
10
|
Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:3637-3651. [DOI: 10.1007/s00253-017-8155-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
11
|
Zhu J, Zhu XG, Ying SH, Feng MG. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana. Fungal Genet Biol 2016; 98:52-60. [PMID: 28011319 DOI: 10.1016/j.fgb.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Vacuolar ATPase (V-ATPase) is a conserved multi-subunit protein complex that mediates intracellular acidification in fungi. Here we show functional diversity of V-ATPase subunit H (BbVmaH) in Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of BbvmaH resulted in elevated vacuolar pH, increased Ca2+ level in cytosol but not in vacuoles, accelerated culture acidification and reduced accumulation of extracellular ammonia. Aerial conidiation and submerged blastospore production were largely delayed and reduced in the deletion mutant, respectively, accompanied with a significant delay in conidial germination, alterations of conidia and blastospores in morphology, size and/or density, and severe growth defects in minimal media with different carbon and nitrogen sources. Despite null responses to osmotic, oxidative and cell wall perturbing stresses, the deletion mutant showed increased sensitivity to Ca2+, Zn2+ and Cu2+ during growth while its conidia were less tolerant to a wet-heat stress at 45°C and UV-B irradiation. Intracellular glycerol and mannitol contents also decreased significantly. Its virulence to Galleria mellonella larvae was significantly attenuated when conidia were topically applied for normal cuticle infection or injected into haemocoel for cuticle-bypassing infection. All phenotypic changes were restored by targeted gene complementation. Our results indicate that BbVmaH plays an important role in sustaining not only vacuolar acidification but also cytosolic calcium accumulation, ambient pH homeostasis, in vitro asexual cycle and virulence in B. bassiana.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Wang J, Ying SH, Hu Y, Feng MG. Vital role for the J-domain protein Mdj1 in asexual development, multiple stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:185-195. [DOI: 10.1007/s00253-016-7757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
|
13
|
Zhu J, Ying SH, Feng MG. The Na + /H + antiporter Nhx1 controls vacuolar fusion indispensible for life cycles in vitro and in vivo in a fungal insect pathogen. Environ Microbiol 2016; 18:3884-3895. [PMID: 27112237 DOI: 10.1111/1462-2920.13359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023]
Abstract
The sole Na+ /H+ antiporter Nhx1 has been generally unexplored in filamentous fungi. We characterized Nhx1 in the entomopathogenic fungus Beauveria bassiana. An eGFP-tagged Nhx1 fusion accumulated in small punctuate structures, presumably endosomal and trans-Golgi network compartments, between septum and tubular vacuole of each wild-type cell stained with a vacuole-specific dye. Deletion of nhx1 resulted in significant acidification and severe fusion defect in vacuoles, which were fragmented and distinct from large or tubular wild-type vacuoles. The deletion also caused a drastic reduction in aerial conidiation or submerged blastospore production and more severe defect in vegetative growth than in conidial germination. The Δnhx1 mutant became more sensitive to high osmolarity, heat shock and several metal ions during growth but its conidia showed increased UV-B tolerance. Intriguingly, Δnhx1 was unable to infect a model insect through cuticle penetration or intrahaemocoel injection because it produced much less biomass and cuticle-degrading enzymes in a minimal broth and failed to form blastospores in the insect haemolymph. All changes were completely or largely restored by targeted nhx1 complementation. Our results provide novel insight into an indispensability of Nhx1 for not only vacuolar fusion but also life cycles in vitro and in vivo in B. bassiana.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| |
Collapse
|
14
|
Garg N, Pandey R. High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Wang J, Ying SH, Hu Y, Feng MG. Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen. Environ Microbiol 2016; 18:1037-47. [DOI: 10.1111/1462-2920.13197] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
- Key Laboratory of Tropical Marine Bio-resources and Ecology; RNAM Center for Marine Microbiology; Guangdong Key Laboratory of Marine Material Medical; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou Guangdong 510301 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| |
Collapse
|
16
|
WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol 2015; 99:10069-81. [DOI: 10.1007/s00253-015-6823-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/01/2015] [Accepted: 07/05/2015] [Indexed: 12/31/2022]
|
17
|
Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen. Sci Rep 2015; 5:10108. [PMID: 25955538 PMCID: PMC4424799 DOI: 10.1038/srep10108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/30/2015] [Indexed: 01/18/2023] Open
Abstract
Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests.
Collapse
|
18
|
Garza-López PM, Suárez-Vergel G, Hamdan-Partida A, Loera O. Variations in oxygen concentration cause differential antioxidant response and expression of related genes in Beauveria bassiana. Fungal Biol 2015; 119:257-63. [PMID: 25813512 DOI: 10.1016/j.funbio.2014.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana is widely used in pest biocontrol strategies. We evaluated both the antioxidant response mediated by compatible solutes, trehalose or mannitol, and the expression of related genes using oxygen pulses at three oxygen concentrations in solid state culture (SSC): normal atmosphere (21% O2), low oxygen (16% O2) and enriched oxygen (26% O2). Trehalose concentration decreased 75% after atmospheric modifications in the cultures, whereas mannitol synthesis was three-fold higher under the 16% O2 pulses relative to normal atmosphere (100 and 30 μg mannitol mg(-1) biomass, respectively). Confirming this result, expression of the mpd gene, coding for mannitol-1-P dehydrogenase (MPD), increased up to 1.4 times after O2 pulses. The expression of the bbrgs1 gene, encoding a regulatory G protein related to conidiation, was analysed to explain previously reported differences in conidial production. Surprisingly, expression of bbrgs1 decreased after atmospheric modification. Finally, principal component analysis (PCA) indicated that 83.39% of the variability in the data could be explained by two components. This analysis corroborated the positive correlation between mannitol concentration and mpd gene expression, as well as the negative correlation between conidial production and bbrgs1 gene expression. This study contributes to understanding of antioxidant and molecular response of B. bassiana induced under oxidant conditions.
Collapse
Affiliation(s)
- Paul Misael Garza-López
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, México D. F., Mexico
| | - Gerardo Suárez-Vergel
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, México D. F., Mexico
| | - Aida Hamdan-Partida
- Universidad Autónoma Metropolitana Xochimilco, Departamento de Sistemas Biológicos, Calz. del Hueso 1100, Col. Villa Quietud, C. P. 04960, México, D. F., Mexico
| | - Octavio Loera
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, México D. F., Mexico.
| |
Collapse
|
19
|
Luo F, Wang Q, Yin C, Ge Y, Hu F, Huang B, Zhou H, Bao G, Wang B, Lu R, Li Z. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant. J Invertebr Pathol 2015; 130:154-64. [PMID: 25584432 DOI: 10.1016/j.jip.2015.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 12/01/2022]
Abstract
Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates and distilled water. This indicates that fungal fatty acid metabolism is enhanced when contacting insect, but when in the absence of insect hosts NRP synthesis is increased. Ornithine, arginine and GABA are decreased in mycelia cultured in pupae extracts and root exudates but remain unchanged in distilled water, which suggests that they may be associated with fungal cross-talk with insects and plants. Trehalose and mannitol are decreased while adenine is increased in three conditions, signifying carbon shortage in cells. Together, these results unveil that B. bassiana has differential metabolic responses in pupae extracts and root exudates, and metabolic similarity in root exudates and distilled water is possibly due to the lack of insect components.
Collapse
Affiliation(s)
- Feifei Luo
- Anhui Agricultural University, Hefei 230036, China; Shanghai Institute of Physiology and Ecology, Shanghai 200032, China
| | - Qian Wang
- Anhui Agricultural University, Hefei 230036, China
| | - Chunlin Yin
- Anhui Agricultural University, Hefei 230036, China
| | - Yinglu Ge
- Anhui Agricultural University, Hefei 230036, China
| | - Fenglin Hu
- Anhui Agricultural University, Hefei 230036, China.
| | - Bo Huang
- Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhou
- Naval Postgraduate School, Monterey, CA 93943, USA
| | - Guanhu Bao
- Anhui Agricultural University, Hefei 230036, China
| | - Bin Wang
- Anhui Agricultural University, Hefei 230036, China
| | - Ruili Lu
- Anhui Agricultural University, Hefei 230036, China.
| | - Zengzhi Li
- Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
20
|
Abstract
Beauveria bassiana has been extensively employed since the last century for biocontrol of lepidopteran pests. B. bassiana has also been explored for diverse functions including bioremediation of toxic industrial effluents and heavy-metal polluted soils. Investigations on multifarious applications of chemically diverse secondary metabolites of this entomopathogenic fungus offer promising implications in pharmaceutical and agricultural sectors. In addition, the development of eco-friendly bioremediation strategies using abiotic stress-tolerant strains of B. bassiana will contribute to maintain the sustainability of agroecosystem.
Collapse
Affiliation(s)
- K. Sowjanya Sree
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh India
| |
Collapse
|
21
|
Li F, Wang ZL, Zhang LB, Ying SH, Feng MG. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana. Appl Microbiol Biotechnol 2014; 99:827-40. [DOI: 10.1007/s00253-014-6124-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
22
|
Keyser CA, Fernandes ÉKK, Rangel DEN, Roberts DW. Heat-induced post-stress growth delay: a biological trait of many Metarhizium isolates reducing biocontrol efficacy? J Invertebr Pathol 2014; 120:67-73. [PMID: 24909120 DOI: 10.1016/j.jip.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/25/2023]
Abstract
The habitats of many pest insects have fluctuating climatic conditions. To function effectively, the pathogens of these pests must be capable of infecting and developing disease at a wide range of temperatures. The current study examines ten Metarhizium spp. isolates as to their ability to recover normal metabolic activity after exposure to high temperature for several hours daily; and whether such recovery, with at least some isolates, requires a temporary repair ("retooling") period. Fungal colonies were exposed to 40°C for 4h or 8h followed by 20h or 16h at 28°C, respectively, for three consecutive days. Growth rates during treatments were compared to control plates (constant 28°C) and to plates with growth stoppage by cold treatment (4h or 8h at 5°C per day). All ten isolates survived 3days of cycled heat treatment and resumed normal growth afterward; some isolates however, were considerably more negatively affected by heat-cycling than others. In fact, some isolates underwent greatly reduced growth not only during 8h heating, but also some hours after cessation of heat treatment. This phenomenon is labeled in the current study as "post-stress growth delay" (PSGD). In contrast, all isolates stopped growing during 8h cold treatments, but immediately recommenced growing on return to 28°C. The delay in recommencing growth of some isolates after heat treatment amplifies the effect of this stress. In addition to the studies on the effects of heat cycling on fungal cultures, the effects of imposing such temperature cycling on fungal infection of insects was documented in the laboratory. Three Metarhizium isolates were bioassayed using Galleria mellonella larvae. Treated insects were placed at daily temperature regimes matching those used for the in vitro fungus rate-of-growth study, and insect mortality recorded daily. For all three isolates the levels of insect mortality at the highest-heat dose (40°C at 8h daily) significantly reduced infection. Fluctuating temperatures are likely to be a factor in most pest-insect habitats; therefore, the presence and level of PSGD of each isolate should be a primary consideration in selecting field-appropriate fungal isolates.
Collapse
Affiliation(s)
- Chad A Keyser
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA.
| | | | | | - Donald W Roberts
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA
| |
Collapse
|
23
|
Chen Y, Zhu J, Ying SH, Feng MG. The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence. Appl Microbiol Biotechnol 2014; 98:5517-29. [DOI: 10.1007/s00253-014-5577-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 01/19/2023]
|
24
|
Chen Y, Zhu J, Ying SH, Feng MG. Three mitogen-activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen. PLoS One 2014; 9:e87948. [PMID: 24498410 PMCID: PMC3912201 DOI: 10.1371/journal.pone.0087948] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/30/2013] [Indexed: 01/26/2023] Open
Abstract
Bck1, Mkk1 and Slt2 are three mitogen-activated protein (MAP) kinases constituting cell wall integrity (CWI) pathway that may control multi-stress responses via crosstalk with high-osmolarity glycerol (HOG) pathway in budding yeast. In this study, Bck1, Mkk1 and Slt2 orthologues in Beauveria bassiana were confirmed as the three-module cascade essential for CWI because cell wall impairment occurred in the hyphae and conidia of Δbck1, Δmkk1 and Δslt2 examined in multiple experiments. Strikingly, all the deletion mutants became more sensitive to hyperosmotic NaCl and sorbitol with the Western blot of Hog1 phosphorylation being weakened in Δbck1 and absent in Δmkk1 and Δslt2. Apart from crossing responses to cell wall perturbation and high osmolarity, three deletion mutants exhibited faster growth and conidiation on nutrition-rich medium, much less virulence to Galleria mellonella larvae, and higher sensitivity to nutritional, fungicidal, thermal and UV-B irradiative stresses, accompanied with less accumulation of intracellular mannitol and trehalose. Moreover, Δmkk1 and Δslt2 were equally more sensitive to all the stresses of different types except wet-heat stress than wild type and more or less different from Δbck1 in sensitivity to most of the stresses despite their null responses to two oxidants. All the changes in three deletion mutants were restored by each targeted gene complementation. Taken together, the CWI-required Bck1, Mkk1 and Slt2 are all positive, but differential, regulators of multi-stress tolerance and virulence perhaps due to interplay with the HOG pathway essential for osmoregulation, thereby contributing greatly to the biocontrol potential of the fungal entomopathogen.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Rangel DE, Fernandes ÉK, Anderson AJ, Roberts DW. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Fungal Biol 2012; 116:438-42. [DOI: 10.1016/j.funbio.2012.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/30/2011] [Accepted: 01/05/2012] [Indexed: 12/01/2022]
|
26
|
Wang ZL, Lu JD, Feng MG. Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2011; 14:2139-50. [DOI: 10.1111/j.1462-2920.2011.02654.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Ying SH, Wang XH, Feng MG. Characterization of a thioredoxin (BbTrx) from the entomopathogenic fungus Beauveria bassiana and its expression in response to thermal stress. Can J Microbiol 2011; 56:934-42. [PMID: 21076484 DOI: 10.1139/w10-081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thioredoxin (BbTrx) was identified from the entomopathogenic fungus Beauveria bassiana. The cloned nucleotide sequence consisted of a 423-bp open reading frame encoding a 141-amino-acid thioredoxin, a 1011-bp 5' region, and a 419-bp 3' region. The deduced protein sequence of BbTrx, including a common 95-amino-acid conserved domain and a unique 46-amino-acid carboxy terminal region, was similar (≤38% identity) to that of other thioredoxins and phylogenetically closest to that from Neurospora crassa. In insulin solution containing dithiothreitol at 25 °C, recombinant BbTrx or a truncated form lacking the carboxy terminal region (BbTrxD) exhibited disulfide reduction activity. BbTrxD was more active after pre-incubation at 40-75 °C, and cells expressing BbTrxD showed significantly higher tolerance to thermal stress (51 °C). The BbTrx expression in B. bassiana was greatly elevated when stressed at 40 °C. The results indicate that the new thioredoxin is a potential target for improving the thermotolerance of B. bassiana formulations.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | |
Collapse
|
28
|
Characterization of Beauveria bassiana neutral trehalase (BbNTH1) and recognition of crucial stress-responsive elements to control its expression in response to multiple stresses. Microbiol Res 2011; 166:282-93. [DOI: 10.1016/j.micres.2010.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/21/2010] [Accepted: 04/04/2010] [Indexed: 12/20/2022]
|
29
|
Rangel DEN, Fernandes EKK, Braga GUL, Roberts DW. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiol Lett 2011; 315:81-6. [PMID: 21204917 DOI: 10.1111/j.1574-6968.2010.02168.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Light conditions during mycelial growth are known to influence fungi in many ways. The effect of visible-light exposure during mycelial growth was investigated on conidial tolerance to UVB irradiation and wet heat of Metarhizium robertsii, an insect-pathogenic fungus. Two nutrient media and two light regimens were compared. Conidia were produced on (A) potato dextrose agar plus yeast extract medium (PDAY) (A1) under dark conditions or (A2) under continuous visible light (provided by two fluorescent lamps with intensity 5.4 W m(-2)). For comparison, the fungus was also produced on (B) minimal medium (MM) under continuous-dark incubation, which is known to produce conidia with increased tolerance to heat and UVB radiation. The UVB tolerances of conidia produced on PDAY under continuous visible light were twofold higher than conidia produced on PDAY medium under dark conditions, and this elevated UVB tolerance was similar to that of conidia produced on MM in the dark. The heat tolerance of conidia produced under continuous light was, however, similar to that of conidia produced on MM or PDAY in the dark. Conidial yield on PDAY medium was equivalent when the fungus was grown either under continuous-dark or under continuous-light conditions.
Collapse
|
30
|
Wang ZL, Ying SH, Feng MG. Gene cloning and catalysis features of a new mannitol-1-phosphate dehydrogenase (BbMPD) from Beauveria bassiana. Carbohydr Res 2010; 345:50-4. [DOI: 10.1016/j.carres.2009.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/11/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
31
|
Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J Mol Evol 2009; 70:85-97. [PMID: 20033398 DOI: 10.1007/s00239-009-9311-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: "Witches' Broom" and "Frosty Pod Rot", respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.
Collapse
|