1
|
Golubev S, Rasterkovskaya M, Sungurtseva I, Burov A, Muratova A. Phenanthrene-Degrading and Nickel-Resistant Neorhizobium Strain Isolated from Hydrocarbon-Contaminated Rhizosphere of Medicago sativa L. Microorganisms 2024; 12:1586. [PMID: 39203428 PMCID: PMC11356111 DOI: 10.3390/microorganisms12081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pollutant degradation and heavy-metal resistance may be important features of the rhizobia, making them promising agents for environment cleanup biotechnology. The degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH), by the rhizobial strain Rsf11 isolated from the oil-polluted rhizosphere of alfalfa and the influence of nickel ions on this process were studied. On the basis of whole-genome and polyphasic taxonomy, the bacterium Rsf11 represent a novel species of the genus Neorhizobium, so the name Neorhizobium phenanthreniclasticum sp. nov. was proposed. Analysis of phenanthrene degradation by the Rsf1 strain revealed 1-hydroxy-2-naphthoic acid as the key intermediate and the activity of two enzymes apparently involved in PAH degradation. It was also shown that the nickel resistance of Rsf11 was connected with the extracellular adsorption of metal by EPS. The joint presence of phenanthrene and nickel in the medium reduced the degradation of PAH by the microorganism, apparently due to the inhibition of microbial growth but not due to the inhibition of the activity of the PAH degradation enzymes. Genes potentially involved in PAH catabolism and nickel resistance were discovered in the microorganism studied. N. phenanthreniclasticum strain Rsf11 can be considered as a promising candidate for use in the bioremediation of mixed PAH-heavy-metal contamination.
Collapse
Affiliation(s)
| | | | | | | | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia; (S.G.); (M.R.); (I.S.); (A.B.)
| |
Collapse
|
2
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Kugler A, Brigmon RL, Friedman A, Coutelot FM, Polson SW, Seaman JC, Simpson W. Bioremediation of copper in sediments from a constructed wetland ex situ with the novel bacterium Cupriavidus basilensis SRS. Sci Rep 2022; 12:17615. [PMID: 36271237 PMCID: PMC9587019 DOI: 10.1038/s41598-022-20930-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/21/2022] [Indexed: 01/21/2023] Open
Abstract
The H-02 constructed wetland was designed to remove metals (primarily copper and zinc) to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The concentration of Cu and Zn in the sediments has increased over the lifetime of the wetland and is a concern. A bioremediation option was investigated at the laboratory scale utilizing a newly isolated bacterium of the copper metabolizing genus Cupriavidus isolated from Tim's Branch Creek, a second-order stream that eventually serves as a tributary to the Savannah River, contaminated with uranium and other metals including copper, nickel, and mercury. Cupriavidus basilensis SRS is a rod-shaped, gram-negative bacterium which has been shown to have predatory tendencies. The isolate displayed resistance to the antibiotics ofloxacin, tetracycline, ciprofloxacin, select fungi, as well as Cu2+ and Zn2+. Subsequent ribosomal sequencing demonstrated a 100% confidence for placement in the genus Cupriavidus and a 99.014% match to the C. basilensis type strain. When H-02 wetland samples were inoculated with Cupriavidus basilensis SRS samples showed significant (p < 0.05) decrease in Cu2+ concentrations and variability in Zn2+ concentrations. Over the 72-h incubation there were no significant changes in the inoculate densities (106-108 cells/ML) indicating Cupriavidus basilensis SRS resiliency in this environment. This research expands our understanding of the Cupriavidus genus and demonstrates the potential for Cupriavidus basilensis SRS to bioremediate sites impacted with heavy metals, most notably copper.
Collapse
Affiliation(s)
- Alex Kugler
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Robin L. Brigmon
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Abby Friedman
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Fanny M. Coutelot
- grid.26090.3d0000 0001 0665 0280Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC USA
| | - Shawn W. Polson
- grid.33489.350000 0001 0454 4791Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE USA
| | - John C. Seaman
- grid.213876.90000 0004 1936 738XUniversity of Georgia Savannah River Ecology Laboratory, Aiken, SC USA
| | - Waltena Simpson
- grid.263782.a0000 0004 1936 8892Department of Biological Sciences, South Carolina State University, Orangeburg, SC USA
| |
Collapse
|
5
|
Pishchik V, Mirskaya G, Chizhevskaya E, Chebotar V, Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJ 2021; 9:e12230. [PMID: 34703670 PMCID: PMC8487243 DOI: 10.7717/peerj.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Nickel (Ni) is an essential element for plant growth and is a constituent of several metalloenzymes, such as urease, Ni-Fe hydrogenase, Ni-superoxide dismutase. However, in high concentrations, Ni is toxic and hazardous to plants, humans and animals. High levels of Ni inhibit plant germination, reduce chlorophyll content, and cause osmotic imbalance and oxidative stress. Sustainable plant-bacterial native associations are formed under Ni-stress, such as Ni hyperaccumulator plants and rhizobacteria showed tolerance to high levels of Ni. Both partners (plants and bacteria) are capable to reduce the Ni toxicity and developed different mechanisms and strategies which they manifest in plant-bacterial associations. In addition to physical barriers, such as plants cell walls, thick cuticles and trichomes, which reduce the elevated levels of Ni entrance, plants are mitigating the Ni toxicity using their own antioxidant defense mechanisms including enzymes and other antioxidants. Bacteria in its turn effectively protect plants from Ni stress and can be used in phytoremediation. PGPR (plant growth promotion rhizobacteria) possess various mechanisms of biological protection of plants at both whole population and single cell levels. In this review, we highlighted the current understanding of the bacterial induced protective mechanisms in plant-bacterial associations under Ni stress.
Collapse
Affiliation(s)
- Veronika Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Galina Mirskaya
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Elena Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | - Vladimir Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | | |
Collapse
|
6
|
Van Houdt R, Vandecraen J, Leys N, Monsieurs P, Aertsen A. Adaptation of Cupriavidus metallidurans CH34 to Toxic Zinc Concentrations Involves an Uncharacterized ABC-Type Transporter. Microorganisms 2021; 9:microorganisms9020309. [PMID: 33540705 PMCID: PMC7912956 DOI: 10.3390/microorganisms9020309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cupriavidus metallidurans CH34 is a well-studied metal-resistant β-proteobacterium and contains a battery of genes participating in metal metabolism and resistance. Here, we generated a mutant (CH34ZnR) adapted to high zinc concentrations in order to study how CH34 could adaptively further increase its resistance against this metal. Characterization of CH34ZnR revealed that it was also more resistant to cadmium, and that it incurred seven insertion sequence-mediated mutations. Among these, an IS1088 disruption of the glpR gene (encoding a DeoR-type transcriptional repressor) resulted in the constitutive expression of the neighboring ATP-binding cassette (ABC)-type transporter. GlpR and the adjacent ABC transporter are highly similar to the glycerol operon regulator and ATP-driven glycerol importer of Rhizobium leguminosarum bv. viciae VF39, respectively. Deletion of glpR or the ABC transporter and complementation of CH34ZnR with the parental glpR gene further demonstrated that loss of GlpR function and concomitant derepression of the adjacent ABC transporter is pivotal for the observed resistance phenotype. Importantly, addition of glycerol, presumably by glycerol-mediated attenuation of GlpR activity, also promoted increased zinc and cadmium resistance in the parental CH34 strain. Upregulation of this ABC-type transporter is therefore proposed as a new adaptation route towards metal resistance.
Collapse
Affiliation(s)
- Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Correspondence:
| | - Joachim Vandecraen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Pieter Monsieurs
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
7
|
Cupriavidus sp. strain Ni-2 resistant to high concentration of nickel and its genes responsible for the tolerance by genome comparison. Arch Microbiol 2019; 201:1323-1331. [DOI: 10.1007/s00203-019-01700-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
8
|
Riedel S, Siemiatkowska B, Watanabe M, Müller CS, Schünemann V, Hoefgen R, Leimkühler S. The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species. Front Microbiol 2019; 10:406. [PMID: 30918498 PMCID: PMC6424863 DOI: 10.3389/fmicb.2019.00406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
The mitochondrial ATP-binding cassette (ABC) transporters ABCB7 in humans, Atm1 in yeast and ATM3 in plants, are highly conserved in their overall architecture and particularly in their glutathione binding pocket located within the transmembrane spanning domains. These transporters have attracted interest in the last two decades based on their proposed role in connecting the mitochondrial iron-sulfur (Fe-S) cluster assembly with its cytosolic Fe-S cluster assembly (CIA) counterpart. So far, the specific compound that is transported across the membrane remains unknown. In this report we characterized the ABCB7-like transporter Rcc02305 in Rhodobacter capsulatus, which shares 47% amino acid sequence identity with its mitochondrial counterpart. The constructed interposon mutant strain in R. capsulatus displayed increased levels of intracellular reactive oxygen species without a simultaneous accumulation of the cellular iron levels. The inhibition of endogenous glutathione biosynthesis resulted in an increase of total glutathione levels in the mutant strain. Bioinformatic analysis of the amino acid sequence motifs revealed a potential aminotransferase class-V pyridoxal-5'-phosphate (PLP) binding site that overlaps with the Walker A motif within the nucleotide binding domains of the transporter. PLP is a well characterized cofactor of L-cysteine desulfurases like IscS and NFS1 which has a role in the formation of a protein-bound persulfide group within these proteins. We therefore suggest renaming the ABCB7-like transporter Rcc02305 in R. capsulatus to PexA for PLP binding exporter. We further suggest that this ABC-transporter in R. capsulatus is involved in the formation and export of polysulfide species to the periplasm.
Collapse
Affiliation(s)
- Simona Riedel
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Beata Siemiatkowska
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Mutsumi Watanabe
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Christina S Müller
- Biophysics and Medical Physics Group, Department of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Volker Schünemann
- Biophysics and Medical Physics Group, Department of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
9
|
Responses of Acidithiobacillus thiooxidans A01 to Individual and Joint Nickel (Ni2+) and Ferric (Fe3+). MINERALS 2019. [DOI: 10.3390/min9020082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acidithiobacillus thiooxidans A01 is widely used in bioleaching processes and commonly thrives in most metal-rich environments. However, interactions between different heavy metals remain obscure. In this study, we elaborated the effect of ferric iron on the growth and gene expression of At. thiooxidans A01 under the stress of nickel. The results showed that 600 mM Ni2+ completely inhibited the growth and sulfur metabolism of At. thiooxidans A01. However, trace amounts of Fe3+ (0.5 mM) facilitated the growth of At. thiooxidans A01 in the presence of 600 mM Ni2+. With the addition of 5 mM Fe3+, the maximum cell density reached 1.84 × 108 cell/mL, and pH value was 0.95. In addition, metal resistance-related and sulfur metabolism genes were significantly up regulated with extra ferric iron. Taking the whole process into account, the promoting effect of Fe3+ addition can be attributed to the following: (1) alleviation of the effects of Ni2+ toxicity and restoring the growth of At. thiooxidans A01, (2) a choice of multiple pathways to export nickel ion and producing precursor of chelators of heavy metals. This can suggest that microorganisms may widely exhibit metabolic activity in iron-rich environments with heavy metals. Our study will facilitate the technique development for the processing of ore bodies with highly challenging ore compositions.
Collapse
|
10
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
11
|
Baral B. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters. ADVANCES IN GENETICS 2017; 98:117-154. [PMID: 28942792 DOI: 10.1016/bs.adgen.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases.
Collapse
|
12
|
Abstract
A small number of physiologically important ATP-binding cassette (ABC) transporters are found in mitochondria. Most are half transporters of the B group forming homodimers and their topology suggests they function as exporters. The results of mutant studies point towards involvement in iron cofactor biosynthesis. In particular, ABC subfamily B member 7 (ABCB7) and its homologues in yeast and plants are required for iron-sulfur (Fe-S) cluster biosynthesis outside of the mitochondria, whereas ABCB10 is involved in haem biosynthesis. They also play a role in preventing oxidative stress. Mutations in ABCB6 and ABCB7 have been linked to human disease. Recent crystal structures of yeast Atm1 and human ABCB10 have been key to identifying substrate-binding sites and transport mechanisms. Combined with in vitro and in vivo studies, progress is being made to find the physiological substrates of the different mitochondrial ABC transporters.
Collapse
|
13
|
Bioinformatic survey of ABC transporters in dermatophytes. Gene 2016; 576:466-75. [DOI: 10.1016/j.gene.2015.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
|
14
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
15
|
Alboghobeish H, Tahmourespour A, Doudi M. The study of Nickel Resistant Bacteria (NiRB) isolated from wastewaters polluted with different industrial sources. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:44. [PMID: 24475932 PMCID: PMC3931474 DOI: 10.1186/2052-336x-12-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 01/26/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pollution due to the heavy metals is a problem that may have negative consequences on the hydrosphere. One of the best procedures in removing the toxic metals from the environment is using metal resistant bacteria. RESULTS In the present study eight nickel resistant bacteria were isolated from industrial wastewaters. Three of them were selected as the most resistant based on their Maximum tolerable concentration (8, 16 and 24 mM Ni2+). Their identification was done according to morphological, biochemical characteristics and 16SrDNA gene sequencing and they were identified as Cupriavidus sp ATHA3, Klebsiella oxytoca ATHA6 and Methylobacterium sp ATHA7. The accession numbers assigned to ATHA3, ATHA6 and ATHA7 strains are JX120152, JX196648 and JX457333 respectively. The Growth rate of the most resistant isolate, Klebsiella oxytoca strain ATHA6, in the presence of Ni2+ and the reduction in Ni2+ concentration was revealed that K oxytoca ATHA6 could decrease 83 mg/mL of nickel from the medium after 3 days. CONCLUSION It can be concluded that the identified Ni resistant bacteria could be valuable for the bioremediation of Ni polluted waste water and sewage.
Collapse
Affiliation(s)
- Hoda Alboghobeish
- Microbiology Department, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Arezoo Tahmourespour
- Basic Medical Sciences Department, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - Monir Doudi
- Microbiology Department, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| |
Collapse
|
16
|
Xu Y, Yin H, Jiang H, Liang Y, Guo X, Ma L, Xiao Y, Liu X. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Arch Microbiol 2013; 195:637-46. [PMID: 23861147 DOI: 10.1007/s00203-013-0900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/09/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
The effect of Ni²⁺ on the growth and functional gene expression of the pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum has been studied. Compared with the pure culture, the co-culture showed a stronger sulfur and ferrous ion oxidation activity. At 100 mM, A. thiooxidans in co-culture grew faster and had 48 h shorter lag phases. The cell number of A. thiooxidans in co-culture was about 5 times higher than that in pure culture. The existence of A. thiooxidans in co-culture activated the expression of some metal resistance genes in L. ferriphilum at least 16 h in advance. A. thiooxidans in co-culture tends to chose more efficient pathways to transport nickel ion, ensuring the export of heavy metal was faster and more effective than that in pure culture. All the data indicated that there were synergetic interactions between iron- and sulfur-oxidizing bacteria under the stress of Ni²⁺.
Collapse
Affiliation(s)
- Ying Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li W, Cong Q, Pei J, Kinch LN, Grishin NV. The ABC transporters in Candidatus Liberibacter asiaticus. Proteins 2012; 80:2614-28. [PMID: 22807026 PMCID: PMC3688454 DOI: 10.1002/prot.24147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022]
Abstract
Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Qian Cong
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Nick V Grishin
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| |
Collapse
|
18
|
Molina TL, Patel R, Molina DD, Persans MW, Lowe KL. Isolation of a naturally-occurring nickel resistance plasmid from a rare hypersaline estuary (Laguna Madre, Texas, USA) for potential use as a bio-indicator of metal contamination. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bernard DG, Cheng Y, Zhao Y, Balk J. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:590-602. [PMID: 19710232 PMCID: PMC2754654 DOI: 10.1104/pp.109.143651] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ATP-binding cassette transporters of mitochondria (ATMs) are highly conserved proteins, but their function in plants is poorly defined. Arabidopsis (Arabidopsis thaliana) has three ATM genes, namely ATM1, ATM2, and ATM3. Using a collection of insertional mutants, we show that only ATM3 has an important function for plant growth. Additional atm3 alleles were identified among sirtinol-resistant lines, correlating with decreased activities of aldehyde oxidases, cytosolic enzymes that convert sirtinol into an auxin analog, and depend on iron-sulfur (Fe-S) and molybdenum cofactor (Moco) as prosthetic groups. In the sirtinol-resistant atm3-3 allele, the highly conserved arginine-612 is replaced by a lysine residue, the negative effect of which could be mimicked in the yeast Atm1p ortholog. Arabidopsis atm3 mutants displayed defects in root growth, chlorophyll content, and seedling establishment. Analyses of selected metal enzymes showed that the activity of cytosolic aconitase (Fe-S) was strongly decreased across the range of atm3 alleles, whereas mitochondrial and plastid Fe-S enzymes were unaffected. Nitrate reductase activity (Moco, heme) was decreased by 50% in the strong atm3 alleles, but catalase activity (heme) was similar to that of the wild type. Strikingly, in contrast to mutants in the yeast and mammalian orthologs, Arabidopsis atm3 mutants did not display a dramatic iron homeostasis defect and did not accumulate iron in mitochondria. Our data suggest that Arabidopsis ATM3 may transport (1) at least two distinct compounds or (2) a single compound required for both Fe-S and Moco assembly machineries in the cytosol, but not iron.
Collapse
Affiliation(s)
- Delphine G Bernard
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | | |
Collapse
|
21
|
Scherer J, Nies DH. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 2009; 73:601-21. [PMID: 19602147 DOI: 10.1111/j.1365-2958.2009.06792.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cupriavidus metallidurans CH34 possesses a multitude of metal efflux systems. Here, the function of the novel P(IB4)-type ATPase CzcP is characterized, which belongs to the plasmid pMOL30-mediated cobalt-zinc-cadmium (Czc) resistance system. Contribution of CzcP to transition metal resistance in C. metallidurans was compared with that of three P(IB2)-type ATPases (CadA, ZntA, PrbA) and to other efflux proteins by construction and characterization of multiple deletion mutants. These data also yielded additional evidence for an export of metal cations from the periplasm to the outside of the cell rather than from the cytoplasm to the outside. Moreover, metal-sensitive Escherichia coli strains were functionally substituted in trans with CzcP and the three P(IB2)-type ATPases. Metal transport kinetics performed with inside-out vesicles identified the main substrates for these four exporters, the K(m) values and apparent turn-over numbers. In combination with the mutant data, transport kinetics indicated that CzcP functions as 'resistance enhancer': this P(IB4)-type ATPase exports transition metals Zn(2+), Cd(2+) and Co(2+) much more rapidly than the three P(IB2)-type proteins. However, a basic resistance level has to be provided by the P(IB2)-type efflux pumps because CzcP may not be able to reach all different speciations of these metals in the cytoplasm.
Collapse
Affiliation(s)
- Judith Scherer
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | | |
Collapse
|