1
|
Patsakis M, Provatas K, Baltoumas FA, Chantzi N, Mouratidis I, Pavlopoulos GA, Georgakopoulos-Soares I. MAFin: motif detection in multiple alignment files. Bioinformatics 2025; 41:btaf125. [PMID: 40106711 PMCID: PMC11978385 DOI: 10.1093/bioinformatics/btaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
MOTIVATION Whole Genome and Proteome Alignments, represented by the multiple alignment file format, have become a standard approach in comparative genomics and proteomics. These often require identifying conserved motifs, which is crucial for understanding functional and evolutionary relationships. However, current approaches lack a direct method for motif detection within MAF files. We present MAFin, a novel tool that enables efficient motif detection and conservation analysis in MAF files to address this gap, streamlining genomic and proteomic research. RESULTS We developed MAFin, the first motif detection tool for Multiple Alignment Format files. MAFin enables the multithreaded search of conserved motifs using three approaches: (i) using user-specified k-mers to search the sequences. (ii) with regular expressions, in which case one or more patterns are searched, and (iii) with predefined Position Weight Matrices. Once the motif has been found, MAFin detects the motif instances and calculates the conservation across the aligned sequences. MAFin also calculates a conservation percentage, which provides information about the conservation levels of each motif across the aligned sequences, based on the number of matches relative to the length of the motif. A set of statistics enables the interpretation of each motif's conservation level, and the detected motifs are exported in JSON and CSV files for downstream analyses. AVAILABILITY AND IMPLEMENTATION MAFin is offered as a Python package under the GPL license as a multi-platform application and is available at: https://github.com/Georgakopoulos-Soares-lab/MAFin.
Collapse
Affiliation(s)
- Michail Patsakis
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kimonas Provatas
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
- Division of Basic Sciences, University of Crete Medical School, Heraklion 71110, Greece
| | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari 16672, Greece
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Molecular and Precision Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
2
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Fontana F, Alessandri G, Longhi G, Anzalone R, Viappiani A, Turroni F, van Sinderen D, Ventura M. Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microb Genom 2021; 7. [PMID: 34319225 PMCID: PMC8477406 DOI: 10.1099/mgen.0.000609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the Bifidobacterium longum species have been shown to possess adaptive abilities to allow colonization of different mammalian hosts, including humans, primates and domesticated mammalian species, such as dogs, horses, cattle and pigs. To date, three subspecies have formally been recognized to belong to this bifidobacterial taxon, i.e. B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis. Although B. longum subsp. longum is widely distributed in the human gut irrespective of host age, B. longum subsp. infantis appears to play a significant role as a prominent member of the gut microbiota of breast-fed infants. Nevertheless, despite the considerable scientific relevance of these taxa and the vast body of genomic data now available, an accurate dissection of the genetic features that comprehensively characterize the B. longum species and its subspecies is still missing. In the current study, we employed 261 publicly available B. longum genome sequences, combined with those of 11 new isolates, to investigate genomic diversity of this taxon through comparative genomic and phylogenomic approaches. These analyses allowed us to highlight a remarkable intra-species genetic and physiological diversity. Notably, characterization of the genome content of members of B. longum subsp. infantis subspecies suggested that this taxon may have acquired genetic features for increased competitiveness in the gut environment of suckling hosts. Furthermore, specific B. longum subsp. infantis genomic features appear to be responsible for enhanced horizontal gene transfer (HGT) occurrences, underpinning an intriguing dedication toward acquisition of foreign DNA by HGT events.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,GenProbio Srl, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,GenProbio Srl, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Wang G, Liu Q, Pei Z, Wang L, Tian P, Liu Z, Zhao J, Zhang H, Chen W. The Diversity of the CRISPR-Cas System and Prophages Present in the Genome Reveals the Co-evolution of Bifidobacterium pseudocatenulatum and Phages. Front Microbiol 2020; 11:1088. [PMID: 32528454 PMCID: PMC7264901 DOI: 10.3389/fmicb.2020.01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse CRISPR-Cas systems constitute an indispensable part of the bacterial adaptive immune system against viral infections. However, to escape from this immune system, bacteriophages have also evolved corresponding anti-defense measures. We investigated the diversity of CRISPR-Cas systems and the presence of prophages in the genomes of 66 Bifidobacterium pseudocatenulatum strains. Our findings revealed a high occurrence of complete CRISPR-Cas systems (62%, 41/66) in the B. pseudocatenulatum genomes. Subtypes I-C, I-U and II-A, were found to be widespread in this species. No significant association was found between the number of bacterial CRISPR spacers and its host's age. This study on prophages within B. pseudocatenulatum genomes revealed that prophage genes related to distinct functional modules became degraded at different levels, indicating that these prophages were not likely to enter lytic cycle spontaneously. Further, the evolutionary analysis of prophages in this study revealed that they might be derived from different phage ancestors. Notably, self-targeting phenomenon within B. pseudocatenulatum and Anti-CRISPR (Acr) coding genes in prophages was observed. Overall, our results indicate that the competition between B. pseudocatenulatum and phages is a major driving factor for the genomic diversity of both partners.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qian Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Genome analysis of the temperate bacteriophage PMBT6 residing in the genome of Bifidobacterium thermophilum MBT94004. Arch Virol 2019; 165:233-236. [PMID: 31676997 DOI: 10.1007/s00705-019-04448-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The Siphoviridae phage PMBT6 was identified by transmission electron microscopy in the supernatant of Bifidobacterium thermophilum MBT94004 bioreactor fermentation culture, where it occurred at a moderately high titer. Genome analysis of the bacterial DNA confirmed the presence of this prophage within the genome of the lysogenic host. Under laboratory conditions, the prophage could not be induced by mitomycin C, ultraviolet C irradiation or hydrogen peroxide, suggesting that the prophage was released by spontaneous induction under (yet unknown) bioreactor conditions. Genome sequencing of the virion resulted in a linear, double-stranded DNA molecule of 36,561 bp with a mol% G + C content of 61.7 and 61 predicted open reading frames with low similarity to other Bifidobacterium spp. genomes, confirming that PMBT6 represents a novel temperate phage for this genus.
Collapse
|
5
|
Mahony J, Lugli GA, van Sinderen D, Ventura M. Impact of gut-associated bifidobacteria and their phages on health: two sides of the same coin? Appl Microbiol Biotechnol 2018; 102:2091-2099. [PMID: 29396587 DOI: 10.1007/s00253-018-8795-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Bifidobacteria are among the first microbial colonisers of the human infant gut post-partum. Their early appearance and dominance in the human infant gut and the reported health-promoting or probiotic status of several bifidobacterial strains has culminated in intensive research efforts that focus on their activities as part of the gut microbiota and the concomitant implications for human health. In this mini-review, we evaluate current knowledge on the genomics of this diverse bacterial genus, and on the genetic and functional adaptations that have underpinned the success of bifidobacteria in colonising the infant gut. The growing interest in functional genomics of bifidobacteria has also created interest in the interactions of bifidobacteria and their (bacterio)phages. While virulent phages of bifidobacteria have yet to be isolated, the incidence of integrated (pro)phages in bifidobacterial genomes are widely reported and this mini-review considers the role of these so-called bifidoprophages in modulating bifidobacterial populations in the human gastrointestinal tract and the implications for existing and future development of probiotic therapies.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology, National University of Ireland, Cork, Ireland.,APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology, National University of Ireland, Cork, Ireland. .,APC Microbiome Ireland, National University of Ireland, Cork, Ireland.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy. .,Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
6
|
Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 2017; 474:4137-4152. [PMID: 29212851 DOI: 10.1042/bcj20160756] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Members of the genus Bifidobacterium include gut commensals that are particularly abundant among the microbial communities residing in the gut of healthy breast-fed infants, where their presence has been linked to many beneficial host effects. Next-generation DNA sequencing and comparative and functional genome methodologies have been shown to be particularly useful in exploring the diversity of this genus. These combined approaches have allowed the identification of genetic features related to bifidobacterial establishment in the gut, involving host-microbe as well as microbe-microbe interactions. Among these, proteinaceous structures, which protrude from the bacterial surface, i.e. pili or fimbriae, and exopolysaccharidic cell surface layers or capsules represent crucial features that assist in their colonization and persistence in the gut. As bifidobacteria are colonizers of the large intestine, they have to be able to cope with various sources of osmotic, oxidative, bile and acid stress during their transit across the gastric barrier and the small intestine. Bifidobacterial genomes thus encode various survival mechanisms, such as molecular chaperones and efflux pumps, to overcome such challenges. Bifidobacteria represent part of an anaerobic gut community, and feed on nondigestible carbohydrates through a specialized fermentative metabolic pathway, which in turn produces growth substrates for other members of the gut community. Conversely, bifidobacteria may also be dependent on other (bifido)bacteria to access host- and diet-derived glycans, and these complex co-operative interactions, based on resource sharing and cross-feeding strategies, represent powerful driving forces that shape gut microbiota composition.
Collapse
|
7
|
Lugli GA, Milani C, Turroni F, Tremblay D, Ferrario C, Mancabelli L, Duranti S, Ward DV, Ossiprandi MC, Moineau S, van Sinderen D, Ventura M. Prophages of the genusBifidobacteriumas modulating agents of the infant gut microbiota. Environ Microbiol 2016; 18:2196-213. [DOI: 10.1111/1462-2920.13154] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| | - Christian Milani
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| | - Denise Tremblay
- Département de Biochimie, Microbiologie et Bio-Informatique and PROTEO, Faculté des Sciences et de Génie, Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire; Université Laval; Québec City Québec Canada
| | - Chiara Ferrario
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| | - Doyle V. Ward
- Broad Institute of MIT and Harvard; Cambridge MA USA
| | | | - Sylvain Moineau
- Département de Biochimie, Microbiologie et Bio-Informatique and PROTEO, Faculté des Sciences et de Génie, Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire; Université Laval; Québec City Québec Canada
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology; National University of Ireland; Cork Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics; Department of Life Sciences; University of Parma; Parma Italy
| |
Collapse
|
8
|
Briner AE, Lugli GA, Milani C, Duranti S, Turroni F, Gueimonde M, Margolles A, van Sinderen D, Ventura M, Barrangou R. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS One 2015; 10:e0133661. [PMID: 26230606 PMCID: PMC4521832 DOI: 10.1371/journal.pone.0133661] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas systems constitute adaptive immune systems for antiviral defense in bacteria. We investigated the occurrence and diversity of CRISPR-Cas systems in 48 Bifidobacterium genomes to gain insights into the diversity and co-evolution of CRISPR-Cas systems within the genus and investigate CRISPR spacer content. We identified the elements necessary for the successful targeting and inference of foreign DNA in select Type II CRISPR-Cas systems, including the tracrRNA and target PAM sequence. Bifidobacterium species have a very high frequency of CRISPR-Cas occurrence (77%, 37 of 48). We found that many Bifidobacterium species have unusually large and diverse CRISPR-Cas systems that contain spacer sequences showing homology to foreign genetic elements like prophages. A large number of CRISPR spacers in bifidobacteria show perfect homology to prophage sequences harbored in the chromosomes of other species of Bifidobacterium, including some spacers that self-target the chromosome. A correlation was observed between strains that lacked CRISPR-Cas systems and the number of times prophages in that chromosome were targeted by other CRISPR spacers. The presence of prophage-targeting CRISPR spacers and prophage content may shed light on evolutionary processes and strain divergence. Finally, elements of Type II CRISPR-Cas systems, including the tracrRNA and crRNAs, set the stage for the development of genome editing and genetic engineering tools.
Collapse
Affiliation(s)
- Alexandra E. Briner
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Italy
| | - Francesca Turroni
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| | - Miguel Gueimonde
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Italy
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L, Sanchez B, Ferrario C, Viappiani A, Mangifesta M, Mancino W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ Microbiol 2015; 17:2515-31. [PMID: 25523018 DOI: 10.1111/1462-2920.12743] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Bifidobacteria are bacterial gut commensals of mammals, birds and social insects that are perceived to influence the metabolism/physiology of their host. In this context, members of the Bifidobacterium bifidum species are believed to significantly contribute to the overall microbiota of the human gut at infant stage. However, the molecular reasons for their adaptation to this environment are poorly understood. In this study, we analysed the pan-genome of B. bifidum species by decoding genomes of 15 B. bifidum strains, which highlighted the existence of a conserved gene uniquely present in this bifidobacterial taxon, underscoring a nutrient acquisition strategy that targets host-derived glycans, such as those present in mucin. Growth experiments and corresponding transcriptomic analyses confirmed the in silico data and supported these intriguing and unique host glycan-specific saccharolytic features. The ubiquity of the genetic features of B. bifidum for the breakdown of host glycans was confirmed by interrogating metagenomic datasets, thereby supporting the notion that metabolic access to host-derived glycans is a potent evolutionary force that has shaped B. bifidum genomes and consequently the ecology of the infant intestinal microbiota.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Francesca Turroni
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Borja Sanchez
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, Consejo Superior de Investigaciones Científicas, CSIC, Villaviciosa, Asturias, Spain
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Alice Viappiani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Marta Mangifesta
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Walter Mancino
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Miguel Gueimonde
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, Consejo Superior de Investigaciones Científicas, CSIC, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, Consejo Superior de Investigaciones Científicas, CSIC, Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol 2014; 5:437. [PMID: 25191315 PMCID: PMC4140077 DOI: 10.3389/fmicb.2014.00437] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Bifidobacteria are considered dominant and for this reason key members of the human gut microbiota, particularly during the first one to two years following birth. A substantial proportion of the bifidobacterial population in the intestine of infants belong to the Bifidobacterium bifidum taxon, whose members have been shown to display remarkable physiological and genetic features involving adhesion to epithelia, as well as utilization of host-derived glycans. Here, we reviewed the current knowledge on the genetic features and associated adaptations of B. bifidum to the human gut.
Collapse
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland Cork, Ireland
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland Cork, Ireland
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, University of Milan Milan, Italy
| | - Douwe Van Sinderen
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| |
Collapse
|
11
|
Alegría Á, Delgado S, Guadamuro L, Flórez AB, Felis GE, Torriani S, Mayo B. The genome of Bifidobacterium pseudocatenulatum IPLA 36007, a human intestinal strain with isoflavone-activation activity. Gut Pathog 2014; 6:31. [PMID: 25097668 PMCID: PMC4121622 DOI: 10.1186/1757-4749-6-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Bifidobacterium species, including Bifidobacterium pseudocatenulatum, are among the dominant microbial populations of the human gastrointestinal tract. They are also major components of many commercial probiotic products. Resident and transient bifidobacteria are thought to have several beneficial health effects. However, our knowledge of how these bacteria interact and communicate with host cells remains poor. This knowledge is essential for scientific support of their purported health benefits and their rational inclusion in functional foods. Results This work describes the draft genome sequence of Bifidobacterium pseudocatenulatum IPLA 36007, a strain isolated as dominant from the feces of a healthy human. Besides several properties of probiosis, IPLA 36007 exhibited the capability of releasing aglycones from soy isoflavone glycosides. The genome contains 1,851 predicted genes, including 54 genes for tRNAs and fie copies of unique 16S, 23S and 5S rRNA genes. As key attributes of the IPLA 36007 genome we can mention the presence of a lysogenic phage, a cluster encoding type IV fimbriae, and a locus encoding a clustered, regularly interspaced, short, palindromic repeat (CRISPR)-Cas system. Four open reading frames (orfs) encoding β-glucosidases belonging to the glycosyl hydrolase family 3, which may act on isoflavone glycosides, were encountered. Additionally, one gene was found to code for a glycosyl hydrolase of family 1 that might also have β-glucosidase activity. Conclusion The availability of the B. pseudocatenulatum IPLA 36007 genome should allow the enzyme system involved in the release of soy isoflavone aglycones from isoflavone glycosides, and the molecular mechanisms underlying the strain’s probiotic properties, to be more easily understood.
Collapse
Affiliation(s)
- Ángel Alegría
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Lucía Guadamuro
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Giovanna E Felis
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie, 15, 37134 Verona, Italy
| | - Sandra Torriani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie, 15, 37134 Verona, Italy
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto, s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
12
|
Fan X, Xie L, Li W, Xie J. Prophage-like elements present in Mycobacterium genomes. BMC Genomics 2014; 15:243. [PMID: 24673856 PMCID: PMC3986857 DOI: 10.1186/1471-2164-15-243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Prophages, integral components of many bacterial genomes, play significant roles in cognate host bacteria, such as virulence, toxin biosynthesis and secretion, fitness cost, genomic variations, and evolution. Many prophages and prophage-like elements present in sequenced bacterial genomes, such as Bifidobacteria, Lactococcus and Streptococcus, have been described. However, information for the prophage of Mycobacterium remains poorly defined. Results In this study, based on the search of the complete genome database from GenBank, the Whole Genome Shotgun (WGS) databases, and some published literatures, thirty-three prophages were described in detail. Eleven of them were full-length prophages, and others were prophage-like elements. Eleven prophages were firstly revealed. They were phiMAV_1, phiMAV_2, phiMmcs_1, phiMmcs_2, phiMkms_1, phiMkms_2, phiBN42_1, phiBN44_1, phiMCAN_1, phiMycsm_1, and phiW7S_1. Their genomes and gene contents were firstly analyzed. Furthermore, comparative genomics analyses among mycobacterioprophages showed that full-length prophage phi172_2 belonged to mycobacteriophage Cluster A and the phiMmcs_1, phiMkms_1, phiBN44_1, and phiMCAN_1 shared high homology and could be classified into one group. Conclusions To our knowledge, this is the first systematic characterization of mycobacterioprophages, their genomic organization and phylogeny. This information will afford more understanding of the biology of Mycobacterium. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-243) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory breeding base of Three Gorges Eco-environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
13
|
Global genome transcription profiling of Bifidobacterium bifidum PRL2010 under in vitro conditions and identification of reference genes for quantitative real-time PCR. Appl Environ Microbiol 2011; 77:8578-87. [PMID: 22003014 DOI: 10.1128/aem.06352-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bifidobacteria have attracted significant scientific attention due to their perceived role as health-promoting microorganisms, although the genetics of the bacterial group is still underexplored. In this study, we investigated the transcriptome of Bifidobacterium bifidum PRL2010 during in vitro growth by microarray technology. When B. bifidum PRL2010 was grown in liquid broth, 425 of the 1,644 PRL2010 genes represented on the array were expressed in at least one of the three investigated growth phases, i.e., the lag, exponential, and stationary phases. These transcriptional analyses identified a core in vitro transcriptome encompassing 150 genes that are expressed in all phases. A proportion of these genes were further investigated as potential reference genes by quantitative real-time reverse transcription-PCR (qRT-PCR) assays. Their expression stability was evaluated under different growth conditions, which included cultivation on different carbon sources, exposure to environmental stresses (thermal, acidic, and osmotic), and growth phases. Our analyses validated six reference genes suitable for normalizing mRNA expression levels in qRT-PCR experiments applied to bifidobacteria.
Collapse
|
14
|
Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 2010; 149:37-44. [PMID: 21276626 DOI: 10.1016/j.ijfoodmicro.2010.12.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/01/2023]
Abstract
Members of the genus Bifidobacterium are high G+C Gram positive bacteria belonging to the phylum Actinobacteria, and represent common inhabitants of the gastro-intestinal tract (GIT) of mammals, birds and certain cold-blooded animals. The overall microbial population that resides in the GIT, referred to as the "gut microbiota", is an extremely complex community of microorganisms whose functions are believed to have a significant impact on human physiology. Different ecological relationships between bifidobacteria and their host can be developed, ranging from opportunistic pathogenic interactions (e.g. in the case of Bifidobacterium dentium) to a commensal or even health-promoting relationship (e.g. in the case of Bifidobacterium bifidum and Bifidobacterium breve species). Among the known health-promoting or probiotic microorganisms, bifidobacteria represent one of the most dominant group and some bifidobacterial species are frequently used as the probiotic ingredient in many functional foods. However, despite the generally accepted importance of bifidobacteria as constituents of the human microbiota, there is only limited information available on their phylogeny, physiology and genetics. Moreover, host-microbiota interactions and cross-talk between different members of the gut microbiota are far from completely understood although they represent a crucial factor in the development and maintenance of human physiology and immune system. The aim of this review is to highlight the genetic and functional features of bifidobacteria residing in the human GIT using genomic and ecology-based information.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution University of Parma, Italy
| | | | | |
Collapse
|