1
|
Song L, Shen Y, Zhang H, Zhang H, Zhang Y, Wang M, Zhang M, Wang F, Zhou L, Wen C, Zhao Y. Comprehensive genomic analysis of Brevibacillus brevis BF19 reveals its biocontrol potential against bitter gourd wilt. BMC Microbiol 2024; 24:415. [PMID: 39425006 PMCID: PMC11488265 DOI: 10.1186/s12866-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
Bitter gourd wilt, a severe vascular disease triggered by the soilborne pathogen Fusarium oxysporum f. sp. momordicae (FOM), markedly constrains bitter gourd yield. In this study, a novel strain BF19 of Brevibacillus brevis was isolated and identified, exhibiting strong antimicrobial activity against FOM through in vivo and in vitro experiments. To comprehensively assess the biocontrol potential of strain BF19, we conducted phenotypic, phylogenetic, and comparative genomics analyses. Phenotypic analysis revealed that BF19 exhibited 53.33% biocontrol efficacy and significantly increased the average plant height, root fresh weight, and dry weight. Whole-genome sequencing and comparative genomic analysis revealed numerous potential genes associated with biocontrol mechanisms in BF19. Importantly, the integration of metabolic cluster prediction with liquid chromatography‒tandem mass spectrometry (LC‒MS/MS) revealed the presence of a macrobrevin antibiotic, a product of polyketide synthases (PKSs), predominantly in BF19 fermentation products. The effectiveness of the Br. brevis strain BF19 and its crude extract against bitter gourd wilt has also been confirmed. This study provides a genetic framework for future investigations on PKSs and establishes a scientific basis for optimizing field applications of microbial biopesticides derived from Br. brevis BF19.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yue Shen
- Food Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huihao Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Han Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuanyuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mingyue Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Song L, Wang F, Liu C, Guan Z, Wang M, Zhong R, Xi H, Zhao Y, Wen C. Isolation and Evaluation of Streptomyces melanogenes YBS22 with Potential Application for Biocontrol of Rice Blast Disease. Microorganisms 2023; 11:2988. [PMID: 38138134 PMCID: PMC10745888 DOI: 10.3390/microorganisms11122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Chuang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Zhengzhe Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Rongrong Zhong
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| |
Collapse
|
3
|
Liu SW, Zhai XX, Liu D, Liu YY, Sui LY, Luo KK, Yang Q, Li FN, Nikandrova AA, Imamutdinova AN, Lukianov DA, Osterman IA, Sergiev PV, Zhang BY, Zhang DJ, Xue CM, Sun CH. Bioprospecting of Actinobacterial Diversity and Antibacterial Secondary Metabolites from the Sediments of Four Saline Lakes on the Northern Tibetan Plateau. Microorganisms 2023; 11:2475. [PMID: 37894133 PMCID: PMC10609225 DOI: 10.3390/microorganisms11102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The Tibetan Plateau, known as the "Roof of the World" and "The Third Pole", harbors numerous saline lakes primarily distributed in the Northern Tibetan Plateau. However, the challenging conditions of high altitude, low oxygen level, and harsh climate have limited investigations into the actinobacteria from these saline lakes. This study focuses on investigating the biodiversity and bioactive secondary metabolites of cultivable actinobacteria isolated from the sediments of four saline lakes on the Northern Tibetan Plateau. A total of 255 actinobacterial strains affiliated with 21 genera in 12 families of 7 orders were recovered by using the pure culture technique and 16S rRNA gene phylogenetic analysis. To facilitate a high-throughput bioactivity evaluation, 192 isolates underwent OSMAC cultivation in a miniaturized 24-well microbioreactor system (MATRIX cultivation). The antibacterial activity of crude extracts was then evaluated in a 96-well plate antibacterial assay. Forty-six strains demonstrated antagonistic effects against at least one tested pathogen, and their underlying antibacterial mechanisms were further investigated through a dual-fluorescent reporter assay (pDualrep2). Two Streptomyces strains (378 and 549) that produce compounds triggering DNA damage were prioritized for subsequent chemical investigations. Metabolomics profiling involving HPLC-UV/vis, UPLC-QTOF-MS/MS, and molecular networking identified three types of bioactive metabolites belonging to the aromatic polyketide family, i.e., cosmomycin, kidamycin, and hedamycin. In-depth analysis of the metabolomic data unveiled some potentially novel anthracycline compounds. A genome mining study based on the whole-genome sequences of strains 378 and 549 identified gene clusters potentially responsible for cosmomycin and kidamycin biosynthesis. This work highlights the effectiveness of combining metabolomic and genomic approaches to rapidly identify bioactive chemicals within microbial extracts. The saline lakes on the Northern Tibetan Plateau present prospective sources for discovering novel actinobacteria and biologically active compounds.
Collapse
Affiliation(s)
- Shao-Wei Liu
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
| | - Xiao-Xu Zhai
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Life Sciences, Jiamusi University, Jiamusi 154000, China
| | - Di Liu
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
- College of Life Sciences, Jiamusi University, Jiamusi 154000, China
| | - Yu-Yu Liu
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
| | - Li-Ying Sui
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Ke Luo
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
| | - Qin Yang
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
| | - Fei-Na Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing 100045, China;
| | - Arina A. Nikandrova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Arina N. Imamutdinova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ben-Yin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.-Y.Z.); (D.-J.Z.)
| | - De-Jun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.-Y.Z.); (D.-J.Z.)
| | - Chun-Mei Xue
- College of Life Sciences, Jiamusi University, Jiamusi 154000, China
| | - Cheng-Hang Sun
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (S.-W.L.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.-Y.Z.); (D.-J.Z.)
| |
Collapse
|
4
|
Huang J, Huang Y. Lentzea tibetensis sp. nov., a novel Actinobacterium with antimicrobial activity isolated from soil of the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2021; 71. [PMID: 34427551 DOI: 10.1099/ijsem.0.004976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel filamentous Actinobacterium, designated strain FXJ1.1311T, was isolated from soil collected in Ngari (Ali) Prefecture, Qinghai-Tibet Plateau, western PR China. The strain showed antimicrobial activity against Gram-positive bacteria and Fusarium oxysporum. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FXJ1.1311T belonged to the genus Lentzea and showed the highest sequence similarity to Lentzea guizhouensis DHS C013T (98.04%). Morphological and chemotaxonomic characteristics supported its assignment to the genus Lentzea. The genome-wide average nucleotide identity between strain FXJ1.1311T and L. guizhouensis DHS C013T as well as other Lentzea type strains was <82.2 %. Strain FXJ1.1311T also formed a monophyletic line distinct from the known Lentzea species in the phylogenomic tree. In addition, physiological and chemotaxonomic characteristics allowed phenotypic differentiation of the novel strain from L. guizhouensis. Based on the evidence presented here, strain FXJ1.1311T represents a novel species of the genus Lentzea, for which the name Lentzea tibetensis sp. nov. is proposed. The type strain is FXJ1.1311T (=CGMCC 4.7383T=DSM 104975T).
Collapse
Affiliation(s)
- Jiao Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Pan HU, Zhou J, Dawa Z, Dai Y, Zhang Y, Yang H, Wang C, Liu H, Zhou H, Lu X, Tian Y. Diversity of Culturable Bacteria Isolated from Highland Barley Cultivation Soil in Qamdo, Tibet Autonomous Region. Pol J Microbiol 2021; 70:87-97. [PMID: 33815530 PMCID: PMC8008761 DOI: 10.33073/pjm-2021-008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The soil bacterial communities have been widely investigated. However, there has been little study of the bacteria in Qinghai-Tibet Plateau, especially about the culturable bacteria in highland barley cultivation soil. Here, a total of 830 individual strains were obtained at 4°C and 25°C from a highland barley cultivation soil in Qamdo, Tibet Autonomous Region, using fifteen kinds of media. Seventy-seven species were obtained, which belonged to 42 genera and four phyla; the predominant phylum was Actinobacteria (68.82%), followed by Proteobacteria (15.59%), Firmicutes (14.29%), and Bacteroidetes (1.30%). The predominant genus was Streptomyces (22.08%, 17 species), followed by Bacillus (6.49%, five species), Micromonospora (5.19%, four species), Microbacterium (5.19%, four species), and Kribbella (3.90%, three species). The most diverse isolates belonged to a high G+C Gram-positive group; in particular, the Streptomyces genus is a dominant genus in the high G+C Gram-positive group. There were 62 species and 33 genera bacteria isolated at 25°C (80.52%), 23 species, and 18 genera bacteria isolated at 4°C (29.87%). Meanwhile, only eight species and six genera bacteria could be isolated at 25°C and 4°C. Of the 77 species, six isolates related to six genera might be novel taxa. The results showed abundant bacterial species diversity in the soil sample from the Qamdo, Tibet Autonomous Region.
Collapse
Affiliation(s)
- H U Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jie Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhuoma Dawa
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yifan Zhang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Hei Y, Zhang H, Tan N, Zhou Y, Wei X, Hu C, Liu Y, Wang L, Qi J, Gao JM. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol Res 2021; 244:126652. [PMID: 33310352 DOI: 10.1016/j.micres.2020.126652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Actinobacteria that inhabit lichen symbionts are considered a promising yet previously underexplored source of novel compounds. Here, for the first time, we conducted a comprehensive investigation with regard to strain isolation and identification of lichen-associated actinobacteria from Tibet Plateau, antimicrobial activity screening, biosynthetic genes detection, bioactive metabolites identification and activity prediction. A large number of culturable actinomycetes were isolated from lichens around Qinghai Lake, in Qinghai-Tibet Plateau. Twenty-seven strains with distinct morphological characteristics were preliminarily studied. 16S rRNA gene identification showed that 13 strains were new species. The PCR-screening of specific biosynthetic genes indicated that these 27 isolates had abundant intrinsic biosynthetic potential. The antimicrobial activity experiment screened out some potential biological control antagonistic bacteria. The metabolites of 13 strains of Streptomyces with antibacterial activity were analyzed by LC-HRMS, and further 18 compounds were identified by NMR and / or LC-HRMS. The identified compounds were mainly pyrrolidine and indole derivatives, as well as anthracyclines. Seven compounds were identified with less biological activity, then predicted and evaluated their biological activity. The predicted results showed that compound 2 had excellent inhibitory activity on HIV-1 reverse transcriptase. Overall, the results indicate actinobacteria isolated from unexploited plateau lichen are promising sources of biological active metabolite, which could provide important bioactive compounds as potential antibiotic drugs.
Collapse
Affiliation(s)
- Yueyu Hei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China; College of Innovation and Experiment, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Hongli Zhang
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Tan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, China
| | - Yuhan Zhou
- College of Innovation and Experiment, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xin Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Chenhao Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yuande Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China; College of Innovation and Experiment, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
7
|
Jia P, Li M, Feng H, Ma M, Gai J, Yang Z. Actinobacterial Communities of Chosen Extreme Habitats in China. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2020.68.3.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pengli Jia
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Miao Li
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Haiyan Feng
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Mutian Ma
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Jingping Gai
- College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
8
|
Bioprospecting actinobacterial diversity antagonistic to multidrug-resistant bacteria from untapped soil resources of Kotdiji, Pakistan. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Chen H, Yang ZK, Yip D, Morris RH, Lebreux SJ, Cregger MA, Klingeman DM, Hui D, Hettich RL, Wilhelm SW, Wang G, Löffler FE, Schadt CW. One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS One 2019; 14:e0211310. [PMID: 31211785 PMCID: PMC6581249 DOI: 10.1371/journal.pone.0211310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha-1 as NH4NO3) for the first time since planting. Soils were collected at two depths, 0–5 and 5–15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12–22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only ~4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha-1. Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time “snapshot” analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time.
Collapse
Affiliation(s)
- Huaihai Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dan Yip
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Reese H. Morris
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gangsheng Wang
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Frank E. Löffler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zhao Y, Song C, Dong H, Luo Y, Wei Y, Gao J, Wu Q, Huang Y, An L, Sheng H. Community structure and distribution of culturable bacteria in soil along an altitudinal gradient of Tianshan Mountains, China. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1396195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yanting Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Chunli Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Hongqiang Dong
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Sciences, Tarim University, Alare Xinjiang, PR China
| | - Yang Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yali Wei
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Jiangli Gao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Qianqian Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yaolong Huang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Hongmei Sheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
11
|
Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau. Appl Environ Microbiol 2017; 83:AEM.03020-16. [PMID: 28087533 DOI: 10.1128/aem.03020-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023] Open
Abstract
Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.
Collapse
|
12
|
Sun HM, Zhang T, Yu LY, Sen K, Zhang YQ. Ubiquity, diversity and physiological characteristics of Geodermatophilaceae in Shapotou National Desert Ecological Reserve. Front Microbiol 2015; 6:1059. [PMID: 26483778 PMCID: PMC4588033 DOI: 10.3389/fmicb.2015.01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 “species clusters,” 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil.
Collapse
Affiliation(s)
- Hong-Min Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Keya Sen
- Division of Biological Sciences, School of Science, Technology, Engineering, and Mathematics, University of Washington Bothell Bothell, WA, USA
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
13
|
Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Khieu TN, Liu MJ, Nimaichand S, Quach NT, Chu-Ky S, Phi QT, Vu TT, Nguyen TD, Xiong Z, Prabhu DM, Li WJ. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 2015; 6:574. [PMID: 26106377 PMCID: PMC4458686 DOI: 10.3389/fmicb.2015.00574] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/25/2015] [Indexed: 11/13/2022] Open
Abstract
A highly potent secondary metabolite producing endophytic strain, Streptomyces sp. HUST012 was isolated from the stems of the medicinal plant Dracaena cochinchinensis Lour. Strain HUST012 showed antimicrobial and antitumor activities which were significantly much higher than those of dragon's blood extracted from D. cochinchinensis Lour. On further analysis, the strain was found to produce two metabolites, SPE-B11.8 (elucidated to be a novel metabolite (Z)-tridec-7-ene-1,2,13-tricarboxylic acid) and SPE-B5.4 (elucidated as Actinomycin-D). The Minimum Inhibitory Concentration values of SPE-B11.8 against a set of test bacterial organisms (Methicillin-resistant Staphylococcus epidermis ATCC 35984, Methicillin-resistant Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 13883) ranged between 15.63 and 62.5 μg/ml while that for SPE-B5.4 ranged between 0.04 and 2.24 μg/ml. The compound SPE-B11.8 showed cytotoxic effect at 41.63 and 29.54 μg/ml IC 50-values against Hep G2 and MCF-7, respectively, while the compound SPE-B5.4 exhibited stronger activities against them at 0.23 and 0.18 μg/ml IC 50-values.
Collapse
Affiliation(s)
- Thi-Nhan Khieu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University Kunming, China ; Department of Food Technology, School of Biotechnology and Food Technology, Hanoi University of Science and Technology Hanoi, Vietnam
| | - Min-Jiao Liu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University Kunming, China ; Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University Kunming, China
| | - Salam Nimaichand
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-Sen University Guangzhou, China
| | - Ngoc-Tung Quach
- Laboratory of Fermentation Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology Hanoi, Vietnam
| | - Son Chu-Ky
- Department of Food Technology, School of Biotechnology and Food Technology, Hanoi University of Science and Technology Hanoi, Vietnam
| | - Quyet-Tien Phi
- Laboratory of Fermentation Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology Hanoi, Vietnam
| | - Thu-Trang Vu
- Department of Food Technology, School of Biotechnology and Food Technology, Hanoi University of Science and Technology Hanoi, Vietnam
| | - Tien-Dat Nguyen
- Department of Bioactive Products, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi, Vietnam
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University Kunming, China
| | - Deene M Prabhu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University Kunming, China
| | - Wen-Jun Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University Kunming, China ; State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-Sen University Guangzhou, China
| |
Collapse
|
15
|
Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells. Enzyme Microb Technol 2014; 61-62:67-75. [DOI: 10.1016/j.enzmictec.2014.04.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022]
|
16
|
Ding D, Chen G, Wang B, Wang Q, Liu D, Peng M, Shi P. Culturable actinomycetes from desert ecosystem in northeast of Qinghai-Tibet Plateau. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0469-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
Xie ZL, Gao HY, Zhang Q, Wang H, Liu Y. Cloning of a novel xylanase gene from a newly isolated Fusarium sp. Q7-31 and its expression in Escherichia coli. Braz J Microbiol 2012; 43:405-17. [PMID: 24031846 PMCID: PMC3768979 DOI: 10.1590/s1517-838220120001000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/06/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022] Open
Abstract
A strain of Q7-31 was isolated from Qinghai-Tibet Plateau and was identified as Fusarium sp. based on its morphological characteristics and ITS rDNA gene sequence analysis. It has the highest capacity of degrading cell wall activity compared with other 11 strains. To do research on its xylanase activity of Fusarium sp. Q7-31 while the degrading the rice cell walls, the complete gene xyn8 that encodes endo-1, 4-β-xylanase secreted by Fusarium sp. Q7-31 was cloned and sequenced. The coding region of the gene is separated by two introns of 56bp and 55bp. It encodes 230 amino acid residues of a protein with a calculated molecular weight of 25.7 kDa. The animo acids sequence of xyn8 gene has higher similarity with those of family 11 of glycosyl hydrolases reported from other microorganisms. The nature peptide encodeing cDNA was subcloned into pGEX5x-1 expression vector. The recombinant plasmid was expressed in Escherichia coli BL21-CodonPlus (DE3)-RIL, and xylanase activity was measured. The expression fusion protein was identified by SDS-PAGE and Western blotting, a new specific band of about 52kDa was identified when induced by IPTG. Enzyme activity assay verified the recombinants proteins as a xylanase. A maxium activity of 2.34U/ mg, the xylanase had optimal activity at pH 6.0 and temperature 40℃.
Collapse
Affiliation(s)
- Zhan-Ling Xie
- Gansu Agricultural University, Lanzhou 730000, China
- Qinghai University, Xining 810016, China
| | | | - Qian Zhang
- Qinghai University, Xining 810016, China
| | - Huan Wang
- Qinghai University, Xining 810016, China
| | - Ying Liu
- Gansu Agricultural University, Lanzhou 730000, China
| |
Collapse
|