1
|
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR. Int J Mol Sci 2022; 23:ijms23094758. [PMID: 35563149 PMCID: PMC9100119 DOI: 10.3390/ijms23094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS.
Collapse
|
2
|
Multiple Copies of flhDC in Paraburkholderia unamae Regulate Flagellar Gene Expression, Motility, and Biofilm Formation. J Bacteriol 2021; 203:e0029321. [PMID: 34543106 DOI: 10.1128/jb.00293-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.
Collapse
|
3
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
4
|
Ling N, Wang X, Liu D, Shen Y, Zhang D, Ou D, Fan H, Wang J, Ding Y, Zhang J, Wu Q, Ye Y. Role of fliC on biofilm formation, adhesion, and cell motility in Cronobacter malonaticus and regulation of luxS. Food Chem Toxicol 2021; 149:111940. [PMID: 33417975 DOI: 10.1016/j.fct.2020.111940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Cronobacter malonaticus is one of the important foodborne pathogens causing infections mainly in adults. Biofilm formation, adhesion, and motility in Cronobacter have been documented, but the implying molecular mechanism has received little attention. Here, a comparison in biofilm formation, adhesion ability, and cell motility among wild type (WT), △luxS, and △fliC strains were analyzed using scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). The thickest biofilm was formed by WT, followed by △luxS and △fliC. Furthermore, the deletion of fliC caused the loss of cell motility and the failure to flagella biosynthesis and mature biofilm formation. Besides, the adhesion abilities of △luxS and △fliC to biotic cells (LoVo and IEC-6) and abiotic surface (glass) were significantly decreased compared to WT, revealing that fliC might have an important role in the organism's invasion properties. We further demonstrated that the expression of negative regulator (flgM) of flagellin in △luxS was higher than that in WT, which indicated that luxS indirectly contributed to fliC expression. Our findings provided a novel perspective for precaution and control of C. malonaticus through intercepting fliC-mediated adhesion to biotic cells and abiotic surface.
Collapse
Affiliation(s)
- Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dengyu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yizhong Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Danfeng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongying Fan
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
In vitro Edwardsiella piscicida CK108 Transcriptome Profiles with Subinhibitory Concentrations of Phenol and Formalin Reveal New Insights into Bacterial Pathogenesis Mechanisms. Microorganisms 2020; 8:microorganisms8071068. [PMID: 32709101 PMCID: PMC7409036 DOI: 10.3390/microorganisms8071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.
Collapse
|
6
|
Meng J, Bai J, Xu J, Huang C, Chen J. Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica. FEMS Microbiol Lett 2020; 366:5584338. [PMID: 31598670 DOI: 10.1093/femsle/fnz210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
A thorough understanding of the mechanisms of Rcs and EnvZ/OmpR phosphorelay systems that allow Yersinia enterocolitica to thrive in various environments is crucial to prevent and control Y. enterocolitica infections. In this study, we showed that RcsB and OmpR have the ability to function differently in modulating a diverse array of physiological processes in Y. enterocolitica. The rcsB mutant stimulated flagella biosynthesis and increased motility, biofilm formation and c-di-GMP production by upregulating flhDC, hmsHFRS and hmsT. However, mutation in ompR exhibited a non-motile phenotype due to the lack of flagella. Biofilm formation was reduced and less c-di-GMP was produced through the downregulation of flhDC, hmsHFRS and hmsT expression when Y. enterocolitica was exposed to low osmolarity conditions. Furthermore, OmpR was identified to be important for Y. enterocolitica to grow in extreme temperature conditions. Importantly, ompR mutations in Y. enterocolitica were more sensitive to polymyxin B and sodium dodecyl sulfate than rcsB mutations. Since motility, biofilm formation and environmental tolerance are critical for bacterial colonization of the host, these findings indicated that OmpR is more critical than RcsB in shaping the pathogenic phenotype of Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junhong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Can Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Meng J, Xu J, Chen J. The role of osmoregulated periplasmic glucans in the biofilm antibiotic resistance of Yersinia enterocolitica. Microb Pathog 2020; 147:104284. [PMID: 32492459 DOI: 10.1016/j.micpath.2020.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
The formation of biofilms by bacteria is of great significance because it involves many physiological changes that serve to protect the cells from various stresses. One of the best-known biofilm-specific properties of bacteria is that bacteria that grow in biofilms are generally more resistant to antibiotics than their planktonic counterparts. In a previous study, osmoregulated periplasmic glucans (OPGs), catalyzed by the opgGH operon, were identified and found to function in Rcs signalling in Yersinia enterocolitica. In this study, the possible contribution of OPGs to antimicrobial resistance of Y. enterocolitica biofilms were investigated, and the results showed that OPGs, especially when overexpressed, conferred a high level of biofilm resistance to two different classes of antibiotics onto Y. enterocolitica. Subsequent analysis revealed that OPGs regulated the biofilm architecture in Y. enterocolitica by promoting the bacteria to form large cell aggregates. Moreover, the opgGH genes in biofilms showed higher expression than in planktonic cultures. OPGs were required to induce the expression of genes related to flagella, extracellular polysaccharide, and c-di-GMP biosynthesis in Y. enterocolitica biofilms and this effect was more significant when OPGs were overproduced. The current investigation showed an extension in the biological role of OPGs in Y. enterocolitica and provided a strong theoretical basis to further study this resistance mechanism at the molecular level to identify new drug targets or disinfectants for the treatment of infections caused by Y. enterocolitica within biofilms.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingguo Xu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Nieckarz M, Kaczor P, Jaworska K, Raczkowska A, Brzostek K. Urease Expression in Pathogenic Yersinia enterocolitica Strains of Bio-Serotypes 2/O:9 and 1B/O:8 Is Differentially Regulated by the OmpR Regulator. Front Microbiol 2020; 11:607. [PMID: 32322248 PMCID: PMC7156557 DOI: 10.3389/fmicb.2020.00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Yersinia enterocolitica exhibits a dual lifestyle, existing as both a saprophyte and a pathogen colonizing different niches within a host organism. OmpR has been recognized as a regulator that controls the expression of genes involved in many different cellular processes and the virulence of pathogenic bacteria. Here, we have examined the influence of OmpR and varying temperature (26°C vs. 37°C) on the cytoplasmic proteome of Y. enterocolitica Ye9N (bio-serotype 2/O:9, low pathogenicity). Differential label-free quantitative proteomic analysis indicated that OmpR affects the cellular abundance of a number of proteins including subunits of urease, an enzyme that plays a significant role in acid tolerance and the pathogenicity of Y. enterocolitica. The impact of OmpR on the expression of urease under different growth conditions was studied in more detail by comparing urease activity and the transcription of ure genes in Y. enterocolitica strains Ye9N and Ye8N (highly pathogenic bio-serotype 1B/O:8). Urease expression was higher in strain Ye9N than in Ye8N and in cells grown at 26°C compared to 37°C. However, low pH, high osmolarity and the presence of urea did not have a clear effect on urease expression in either strain. Further analysis showed that OmpR participates in the positive regulation of three transcriptional units encoding the multi-subunit urease (ureABC, ureEF, and ureGD) in strain Ye9N, but this was not the case in strain Ye8N. Binding of OmpR to the ureABC and ureEF promoter regions was confirmed using an electrophoretic mobility shift assay, suggesting that this factor plays a direct role in regulating the transcription of these operons. In addition, we determined that OmpR modulates the expression of a ureR-like gene encoding a putative regulator of the ure gene cluster, but in the opposite manner, i.e., positively in Ye9N and negatively in Ye8N. These findings provide some novel insights into the function of OmpR in adaptation strategies of Y. enterocolitica.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Meng J, Huang C, Huang X, Liu D, Han B, Chen J. Osmoregulated Periplasmic Glucans Transmit External Signals Through Rcs Phosphorelay Pathway in Yersinia enterocolitica. Front Microbiol 2020; 11:122. [PMID: 32117145 PMCID: PMC7013093 DOI: 10.3389/fmicb.2020.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023] Open
Abstract
Fast response to environmental changes plays a key role in the transmission and pathogenesis of Yersinia enterocolitica. Osmoregulated periplasmic glucans (OPGs) are known to be involved in environmental perception of several Enterobacteriaceae pathogens; however, the biological function of OPGs in Y. enterocolitica is still unclear. In this study, we investigated the role of OPGs in Y. enterocolitica by deleting the opgGH operon encoding enzymes responsible for OPGs biosynthesis. Complete loss of OPGs in the ΔopgGH mutant resulted in decreased motility, c-di-GMP production, biofilm formation and smaller cell size, whereas the overproduction of OPGs through restoration of opgGH expression promoted c-di-GMP/biofilm production and increased antibiotic resistance of Y. enterocolitica. Gene expression analysis revealed that opgGH deletion reduced transcription of flhDC, ftsAZ, hmsT and hmsHFRS genes regulated by the Rcs phosphorelay system, whereas additional deletion of rcs family genes (rcsF, rcsC, or rcsB) reversed this effect and restored motility and c-di-GMP/biofilm production but further reduced cell size. Furthermore, disruption of the Rcs phosphorelay increased the motility and promoted the induction of biofilm and c-di-GMP production regulated by OPGs through upregulating the expression of flhDC, hmsHFRS, and hmsT. However, deletion of genes encoding the EnvZ/OmpR phosphorelay downregulated the flhDC, hmsHFRS and hmsT expression, leading to the decreased motility and prevented the induction of biofilm and c-di-GMP production regulated by OPGs. These results indicated that Rcs phosphorelay had the effect on OPGs-mediated functional responses in Y. enterocolitica. Our findings disclose part of the biological role of OPGs and the underlying molecular mechanisms associated with Rcs system in the regulation of the pathogenic phenotype in Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Can Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dingyu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
11
|
Zhao Z, Peng T, Oh JI, Glaeser J, Weber L, Li Q, Klug G. A response regulator of the OmpR family is part of the regulatory network controlling the oxidative stress response of Rhodobacter sphaeroides. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:118-128. [PMID: 30451391 DOI: 10.1111/1758-2229.12718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
As a free-living bacterium Rhodobacter sphaeroides needs to respond to many environmental stresses. Oxidative stress, membrane stress or heat stress induce the ompR-1 gene encoding a protein of the OmpR family. Overexpression of OmpR-1 results in increased resistance to organic peroxides and diamide. Our data demonstrate that OmpR-1 positively affects expression of several sRNAs with an established role in R. sphaeroides stress defences and negatively affects the promoter of the rpoHI gene. The RpoHI sigma factor has a main role in the activation of many stress responses. Thus OmpR-1 has a balancing effect on the activation of the RpoHI regulon. We present a model with OmpR-1 as part of a regulatory network controlling stress defences in R. sphaeroides.
Collapse
Affiliation(s)
- Zhiping Zhao
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
- Department of Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | | | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jens Glaeser
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Qingfeng Li
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
12
|
Caby M, Bontemps-Gallo S, Gruau P, Delrue B, Madec E, Lacroix JM. The EnvZ-OmpR Two-Component Signaling System Is Inactivated in a Mutant Devoid of Osmoregulated Periplasmic Glucans in Dickeya dadantii. Front Microbiol 2018; 9:2459. [PMID: 30425688 PMCID: PMC6218677 DOI: 10.3389/fmicb.2018.02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta-, and gamma-Proteobacteria. This polymer of glucose is required for full virulence of many pathogens including Dickeya dadantii (D. dadantii). The phytopathogenic enterobacterium D. dadantii causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in environment sensing. We previously demonstrated that (i) fluctuation of OPG concentration controlled the activation level of the RcsCDB system, and (ii) RcsCDB along with EnvZ/OmpR controlled the mechanism of OPG succinylation. These previous data lead us to explore whether OPGs are required for other two-component systems. In this study, we demonstrate that inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system is not controlled by OPG concentration but requires OPGs for proper activation.
Collapse
Affiliation(s)
- Marine Caby
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Peggy Gruau
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | | | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| |
Collapse
|
13
|
Jaworska K, Nieckarz M, Ludwiczak M, Raczkowska A, Brzostek K. OmpR-Mediated Transcriptional Regulation and Function of Two Heme Receptor Proteins of Yersinia enterocolitica Bio-Serotype 2/O:9. Front Cell Infect Microbiol 2018; 8:333. [PMID: 30294593 PMCID: PMC6158557 DOI: 10.3389/fcimb.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
We show that Yersinia enterocolitica strain Ye9 (bio-serotype 2/O:9) utilizes heme-containing molecules as an iron source. The Ye9 genome contains two multigenic clusters, hemPRSTUV-1 and hemPRST-2, encoding putative heme receptors HemR1 and HemR2, that share 62% amino acid identity. Expression of these proteins in an Escherichia coli mutant defective in heme biosynthesis allowed this strain to use hemin and hemoglobin as a source of porphyrin. The hemPRSTUV-1 and hemPRST-2 clusters are organized as operons, expressed from the phem−1 and weaker phem−2 promoters, respectively. Expression of both operons is negatively regulated by iron and the iron-responsive transcriptional repressor Fur. In addition, OmpR, the response regulator of two component system (TCSs) EnvZ/OmpR, represses transcription of both operons through interaction with binding sequences overlapping the −35 region of their promoters. Western blot analysis of the level of HemR1 in ompR, fur, and ompRfur mutants, showed an additive effect of these mutations, indicating that OmpR may regulate HemR expression independently of Fur. However, the effect of OmpR on the activity of the phem−1 promoter and on HemR1 production was observed in both iron-depleted and iron-replete conditions, i.e., when Fur represses the iron-regulated promoter. In addition, a hairpin RNA thermometer, composed of four uracil residues (FourU) that pair with the ribosome-binding site in the 5′-untranslated region (5′-UTR) of hemR1 was predicted by in silico analysis. However, thermoregulated expression of HemR1 could not be demonstrated. Taken together, these data suggest that Fur and OmpR control iron/heme acquisition via a complex mechanism based on negative regulation of hemR1 and hemR2 at the transcriptional level. This interplay could fine-tune the level of heme receptor proteins to allow Y. enterocolitica to fulfill its iron/heme requirements without over-accumulation, which might be important for pathogenic growth within human hosts.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
The OmpR Regulator of Burkholderia multivorans Controls Mucoid-to-Nonmucoid Transition and Other Cell Envelope Properties Associated with Persistence in the Cystic Fibrosis Lung. J Bacteriol 2018; 200:JB.00216-18. [PMID: 29914989 DOI: 10.1128/jb.00216-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the Burkholderia cepacia complex grow in different natural and man-made environments and are feared opportunistic pathogens that cause chronic respiratory infections in cystic fibrosis patients. Previous studies showed that Burkholderia mucoid clinical isolates grown under stress conditions give rise to nonmucoid variants devoid of the exopolysaccharide cepacian. Here, we determined that a major cause of the nonmucoid morphotype involves nonsynonymous mutations and small indels in the ompR gene encoding a response regulator of a two-component regulatory system. In trans complementation of nonmucoid variants (NMVs) with the native gene restored exopolysaccharide production. The loss of functional Burkholderia multivorans OmpR had positive effects on growth, adhesion to lung epithelial cells, and biofilm formation in high-osmolarity medium, as well as an increase in swimming and swarming motilities. In contrast, phenotypes such as antibiotic resistance, biofilm formation at low osmolarity, and virulence in Galleria mellonella were compromised by the absence of functional OmpR. Transcriptomic studies indicated that loss of the ompR gene affects the expression of 701 genes, many associated with outer membrane composition, motility, stress response, iron acquisition, and the uptake of nutrients, consistent with starvation tolerance. Since the stresses here imposed on B. multivorans may strongly resemble the ones found in the cystic fibrosis (CF) airways and mutations in the ompR gene from longitudinally collected CF isolates have been found, this regulator might be important for the production of NMVs in the CF environment.IMPORTANCE Within the cystic fibrosis (CF) lung, bacteria experience high-osmolarity conditions due to an ion unbalance resulting from defects in CF transmembrane conductance regulator (CFTR) protein activity in epithelial cells. Understanding how bacterial CF pathogens thrive in this environment might help the development of new therapeutic interventions to prevent chronic respiratory infections. Here, we show that the OmpR response regulator of one of the species found in CF respiratory infections, Burkholderia multivorans, is involved in the emergence of nonmucoid colony variants and is important for osmoadaptation by regulating several cell envelope components. Specifically, genetic, phenotypic, genomic, and transcriptomic approaches uncover OmpR as a regulator of cell wall remodeling under stress conditions, with implications in several phenotypes such as exopolysaccharide production, motility, antibiotic resistance, adhesion, and virulence.
Collapse
|
15
|
The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica. Sci Rep 2016; 6:29275. [PMID: 27387855 PMCID: PMC4937351 DOI: 10.1038/srep29275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies.
Collapse
|
16
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
17
|
Ye Y, Gao J, Jiao R, Li H, Wu Q, Zhang J, Zhong X. The Membrane Proteins Involved in Virulence of Cronobacter sakazakii Virulent G362 and Attenuated L3101 Isolates. Front Microbiol 2015; 6:1238. [PMID: 26617581 PMCID: PMC4637405 DOI: 10.3389/fmicb.2015.01238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic foodborne pathogen and the virulence differences were previously documented. However, information about membranous proteins involved in virulence differences was not available. In this study, virulent characterization such as biofilm formation and flagella motility between virulent C. sakazakii isolate G362 and attenuated L3101 were determined. Then, two-dimensional gel electrophoresis (2-DE) technology was used to preliminarily reveal differential expression of membranous proteins between G362 and L3101. On the mass spectrometry (MS) analysis and MASCOT research results, fourteen proteins with differential expression were successfully identified. At the threshold of twofold changes, five out of eight membranous proteins were up-regulated in G362. Using RT-PCR, the expression abundance of the protein (enzV, ompX, lptE, pstB, and OsmY) genes at mRNA levels was consistent with the results by 2-DE method. The findings presented here provided novel information and valuable knowledge for revealing pathogenic mechanism of C. sakazakii.
Collapse
Affiliation(s)
- YingWang Ye
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China ; State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Jina Gao
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China
| | - Rui Jiao
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China
| | - Hui Li
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China ; State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Xian Zhong
- State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| |
Collapse
|
18
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
19
|
Expression of the AcrAB Components of the AcrAB-TolC Multidrug Efflux Pump of Yersinia enterocolitica Is Subject to Dual Regulation by OmpR. PLoS One 2015; 10:e0124248. [PMID: 25893523 PMCID: PMC4403819 DOI: 10.1371/journal.pone.0124248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022] Open
Abstract
OmpR is a transcriptional regulator implicated in the control of various cellular processes and functions in Enterobacteriaceae. This study was undertaken to identify genes comprising the OmpR regulon in the human gastrointestinal pathogen Yersinia enterocolitica. Derivatives of an ompR-negative strain with random transposon insertions creating transcriptional fusions with the reporter gene lacZ were isolated. These were supplied with the wild-type ompR allele in trans and then screened for OmpR-dependent changes in β-galactosidase activity. Using this strategy, five insertions in genes/operons positively regulated by OmpR and two insertions in genes negatively regulated by this protein were identified. Genetic analysis of one of these fusion strains revealed that the gene acrR, encoding transcriptional repressor AcrR is negatively regulated by OmpR. Differential analysis of membrane proteins by SDS-PAGE followed by mass spectrometry identified the protein AcrB, a component of the AcrAB-TolC multidrug efflux pump, as being positively regulated by OmpR. Analysis of the activity of the acrR and acrAB promoters using gfp fusions confirmed their OmpR-dependent repression and activation, respectively. The identification of putative OmpR-binding sites and electrophoretic mobility shift assays confirmed that this regulator binds specifically to both promoter regions with different affinity. Examination of the activity of the acrR and acrAB promoters after the exposure of cells to different chemicals showed that bile salts can act as an OmpR-independent inducer. Taken together, our findings suggest that OmpR positively controls the expression of the AcrAB-TolC efflux pump involved in the adaptive response of Y. enterocolitica O:9 to different chemical stressors, thus conferring an advantage in particular ecological niches.
Collapse
|
20
|
Skorek K, Raczkowska A, Dudek B, Miętka K, Guz-Regner K, Pawlak A, Klausa E, Bugla-Płoskońska G, Brzostek K. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane. PLoS One 2013; 8:e79525. [PMID: 24260242 PMCID: PMC3834241 DOI: 10.1371/journal.pone.0079525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS) compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC) and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.
Collapse
Affiliation(s)
- Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Miętka
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Guz-Regner
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Elżbieta Klausa
- Regional Centre of Transfusion Medicine and Blood Bank, Wroclaw, Poland
| | | | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
21
|
Li W, Ancona V, Zhao Y. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol Genet Genomics 2013; 289:63-75. [PMID: 24218204 DOI: 10.1007/s00438-013-0790-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.
Collapse
Affiliation(s)
- Wenting Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL, 61801, USA
| | | | | |
Collapse
|
22
|
Brzóstkowska M, Raczkowska A, Brzostek K. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9. Front Cell Infect Microbiol 2012; 2:153. [PMID: 23264953 PMCID: PMC3524506 DOI: 10.3389/fcimb.2012.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/19/2012] [Indexed: 11/13/2022] Open
Abstract
The environmental control of invasin (inv) expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates inv gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA, and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences inv expression directly via binding to the inv promoter, but not through modulation of rovA expression.
Collapse
Affiliation(s)
- Marta Brzóstkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | | | |
Collapse
|
23
|
Truchado P, Giménez-Bastida JA, Larrosa M, Castro-Ibáñez I, Espín JC, Tomás-Barberán FA, García-Conesa MT, Allende A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8885-8894. [PMID: 22533445 DOI: 10.1021/jf301365a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Flavanones, flavonoids abundant in Citrus , have been shown to interfere with quorum sensing (QS) and affect related physiological processes. We have investigated the QS-inhibitory effects of an orange extract enriched in O-glycosylated flavanones (mainly naringin, neohesperidin, and hesperidin). The QS-inhibitory capacity of this extract and its main flavanone components was first screened using the bacteriological monitoring system Chromobacterium violaceum . We next examined the ability of the orange extract and of some of the flavanones to (i) reduce the levels of the QS mediators produced by Y. enterocolitica using HPLC-MS/MS, (ii) inhibit biofilm formation, and (iii) inhibit swimming and swarming motility. Additionally, we evaluated changes in the expression of specific genes involved in the synthesis of the lactones (yenI, yenR) and in the flagellar regulon (flhDC, fleB, fliA) by RT-PCR. The results showed that the orange extract and its main flavanone components inhibited QS in C. violaceum, diminished the levels of lactones secreted by Y. enterocolitica to the media, and decreased QS-associated biofilm maturation without affecting bacterial growth. Among the tested compounds, naringin was found to inhibit swimming motility. Exposure to the orange extract and (or) to naringin was also found to be associated with induction of the transcription levels of yenR, flhDC, and fliA. This work shows the in vitro QS-inhibitory effects of an orange extract enriched in flavanones against a human enteropathogen at doses that can be achieved through the diet and suggests that consumption of these natural extracts may have a beneficial antipathogenic effect.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fàbrega A, Vila J. Yersinia enterocolitica: Pathogenesis, virulence and antimicrobial resistance. Enferm Infecc Microbiol Clin 2012; 30:24-32. [DOI: 10.1016/j.eimc.2011.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
|
25
|
OmpR, a Central Integrator of Several Cellular Responses in Yersinia enterocolitica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:325-34. [DOI: 10.1007/978-1-4614-3561-7_40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Palonen E, Lindström M, Karttunen R, Somervuo P, Korkeala H. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C. PLoS One 2011; 6:e25063. [PMID: 21949852 PMCID: PMC3176822 DOI: 10.1371/journal.pone.0025063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022] Open
Abstract
Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (p<0.05) higher at 3°C than at 28°C. Genes encoding the two-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (p<0.05) lower at 3°C than at 28°C. The results suggest that several signal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth.
Collapse
Affiliation(s)
- Eveliina Palonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
27
|
Raczkowska A, Brzóstkowska M, Kwiatek A, Bielecki J, Brzostek K. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica. Folia Microbiol (Praha) 2011; 56:313-9. [PMID: 21818612 DOI: 10.1007/s12223-011-0054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation.
Collapse
Affiliation(s)
- A Raczkowska
- Department of Applied Microbiology, University of Warsaw, Faculty of Biology, Institute of Microbiology, Miecznikowa 1, Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
Raczkowska A, Skorek K, Brzóstkowska M, Lasińska A, Brzostek K. Pleiotropic effects of a Yersinia enterocolitica ompR mutation on adherent-invasive abilities and biofilm formation. FEMS Microbiol Lett 2011; 321:43-9. [DOI: 10.1111/j.1574-6968.2011.02308.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|