1
|
Teles GH, Xavier MR, Da Silva JM, De Souza RB, de Barros Pita W, de Morais MA. The Metabolism of Respiring Carbon Sources by Dekkera bruxellensis and Its Relation with the Production of Acetate. Appl Biochem Biotechnol 2023; 195:6369-6391. [PMID: 36867386 DOI: 10.1007/s12010-023-04398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Dekkera bruxellensis has been studied for several aspects of its metabolism over the past years, which has expanded our comprehension on its importance to industrial fermentation processes and uncovered its industrial relevance. Acetate is a metabolite often found in D. bruxellensis aerobic cultivations, whereas its production is linked to decreased ethanol yields. In a previous work, we aimed to understand how acetate metabolism affected the fermentation capacity of D. bruxellensis. In the present work, we evaluated the role of acetate metabolism in respiring cells using ammonium or nitrate as nitrogen sources. Our results showed that galactose is a strictly respiratory sugar and that a relevant part of its carbon is lost, while the remaining is metabolised through the Pdh bypass pathway before being assimilated into biomass. When this pathway was blocked, yeast growth was reduced while more carbon was assimilated to the biomass. In nitrate, more acetate was produced as expected, which increased carbon assimilation, although less galactose was uptaken from the medium. This scenario was not affected by the Pdh bypass inhibition. The confirmation that acetate production was crucial for carbon assimilation was brought by cultivations in pyruvate. All physiological data were connected to the expression patterns of PFK1, PDC1, ADH1, ALD3, ALD5 and ATP1 genes. Other respiring carbon sources could only be properly used by the cells when some external acetate was supplied. Therefore, the results reported herein helped in providing valuable contributions to the understanding of the oxidative metabolism in this potential industrial yeast.
Collapse
Affiliation(s)
- Gilberto Henrique Teles
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brazil
| | - Mariana Rodrigues Xavier
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brazil
| | | | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | | | - Marcos Antonio de Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brazil.
| |
Collapse
|
2
|
Alencar BRA, de Freitas RAA, Guimarães VEP, Silva RK, Elsztein C, da Silva SP, Dutra ED, de Morais Junior MA, de Souza RB. Meyerozyma caribbica Isolated from Vinasse-Irrigated Sugarcane Plantation Soil: A Promising Yeast for Ethanol and Xylitol Production in Biorefineries. J Fungi (Basel) 2023; 9:789. [PMID: 37623560 PMCID: PMC10455855 DOI: 10.3390/jof9080789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The production of fuels and other industrial products from renewable sources has intensified the search for new substrates or for the expansion of the use of substrates already in use, as well as the search for microorganisms with different metabolic capacities. In the present work, we isolated and tested a yeast from the soil of sugarcane irrigated with vinasse, that is, with high mineral content and acidic pH. The strain of Meyerozyma caribbica URM 8365 was able to ferment glucose, but the use of xylose occurred when some oxygenation was provided. However, some fermentation of xylose to ethanol in oxygen limitation also occurs if glucose was present. This strain was able to produce ethanol from molasses substrate with 76% efficiency, showing its tolerance to possible inhibitors. High ethanol production efficiencies were also observed in acidic hydrolysates of each bagasse, sorghum, and cactus pear biomass. Mixtures of these substrates were tested and the best composition was found for the use of excess plant biomass in supplementation of primary substrates. It was also possible to verify the production of xylitol from xylose when the acetic acid concentration is reduced. Finally, the proposed metabolic model allowed calculating how much of the xylose carbon can be directed to the production of ethanol and/or xylitol in the presence of glucose. With this, it is possible to design an industrial plant that combines the production of ethanol and/or xylitol using combinations of primary substrates with hydrolysates of their biomass.
Collapse
Affiliation(s)
- Bárbara Ribeiro Alves Alencar
- Laboratory of Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, Brazil; (B.R.A.A.); (S.P.d.S.); (E.D.D.)
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (R.A.A.d.F.); (R.K.S.); (C.E.)
| | - Renan Anderson Alves de Freitas
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (R.A.A.d.F.); (R.K.S.); (C.E.)
| | | | - Rayssa Karla Silva
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (R.A.A.d.F.); (R.K.S.); (C.E.)
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50110-000, Brazil;
| | - Carolina Elsztein
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (R.A.A.d.F.); (R.K.S.); (C.E.)
| | - Suzyanne Porfírio da Silva
- Laboratory of Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, Brazil; (B.R.A.A.); (S.P.d.S.); (E.D.D.)
| | - Emmanuel Damilano Dutra
- Laboratory of Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, Brazil; (B.R.A.A.); (S.P.d.S.); (E.D.D.)
| | - Marcos Antonio de Morais Junior
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (R.A.A.d.F.); (R.K.S.); (C.E.)
| | - Rafael Barros de Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50110-000, Brazil;
| |
Collapse
|
3
|
Teles GH, da Silva JM, Xavier MR, de Souza RB, de Barros Pita W, de Morais Junior MA. Metabolic and biotechnological insights on the analysis of the Pdh bypass and acetate production in the yeast Dekkera bruxellensis. J Biotechnol 2022; 355:42-52. [PMID: 35760147 DOI: 10.1016/j.jbiotec.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The advancement of knowledge about the physiology of Dekkera bruxellensis has shown its potential for the production of fuel ethanol very close to the conventional fermenting yeast S. cerevisiae. However, some aspects of its metabolism remain uncovered. In the present study, the respiro-fermentative parameters of D. bruxellensis GDB 248 were evaluated under different cultivation conditions. The results showed that sucrose was more efficiently converted to ethanol than glucose, regardless the nitrogen source, which points out for the industrial efficiency of this yeast in sucrose-based substrate. The blockage of the cytosolic acetate production incremented the yeast fermentative efficiency by 27% (in glucose) and 14% (in sucrose). On the other hand, the presence of nitrate as inducer of acetate production reducing the production of ethanol. Altogether, these results settled the hypothesis that acetate metabolism is the main constraint for ethanol production. Besides, this acetate-generating pathway seems to exert some regulatory action on the flux and distribution of the carbon flowing throught the central metabolism. These physiological aspects were corroborated by the relative expression analysis of key genes in the crossroad to ethanol, acetate and biomass formation. All the results were discussed in the light of the industrial potential of this yeast.
Collapse
Affiliation(s)
- Gilberto Henrique Teles
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Jackeline Maria da Silva
- Laboratory of Molecular Genetics, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | - Mariana Rodrigues Xavier
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Rafael Barros de Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Will de Barros Pita
- Laboratory of Molecular Genetics, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
4
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
5
|
Hydrolyzed Yeast Supplementation to Newly Weaned Piglets: Growth Performance, Gut Health, and Microbial Fermentation. Animals (Basel) 2022; 12:ani12030350. [PMID: 35158673 PMCID: PMC8833445 DOI: 10.3390/ani12030350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Early-weaning in piglets has negative effects on growth performance and gut health, which may cause economic losses in the swine production worldwide. Therefore, this study aimed to examine the effects of a highly digestible protein ingredient from hydrolyzed yeast (Saccharomyces cerevisiae) on growth performance, nutrient digestibility, gut health, and microbial fermentation in early-weaned piglets. Our study found that supplementing hydrolyzed yeast increased growth performance, crude protein digestibility, villus height, villus height-to-crypt ratio, and immunity and decreased inflammation and fecal pathogen count compared with those fed a diet with no addition of hydrolyzed yeast. These research outcomes indicate that supplementation of hydrolyzed yeast has the potential to enhance the growth performance and gut health of early-weaned piglets. Abstract Hydrolyzed yeast (HY)-derived protein from Saccharomyces cerevisiae has a high digestible protein content and nucleotides and is a sweetener immunostimulatory substance. This could be used in nursery diets to minimize diarrhea and improve the growth rate and gut health of early-weaned piglets. This research was conducted with the objective of examining the effect of the inclusion level of HY as a potential protein ingredient for early-weaned piglets. A total of 72 crossbred weaned piglets [(Landrace × Large White) × Duroc] were assigned to three dietary treatments in six replicates with four pigs per pen. Dietary treatments were: (i) control (CON), piglets weaned at 18 days; (ii) CON diet with 5% HY inclusion (HY5); and (iii) CON diet with 10% HY inclusion (HY10) in a corn–soybean meal-based basal diet. Increasing HY levels positively improved body weight, average daily gain, and average daily feed intake (linear effect, p < 0.05). Furthermore, there was a linear increase in N-retention, albumin, jejunal villus height, villus height-to-crypt depth ratio, immunoglobulin A, acetate and propionate production, and Lactobacillus spp. count proportional to the dose of the HY-supplemented diet (p < 0.05). It also observed a decrease in diarrheal rate, jejunal crypt depth, blood urea nitrogen, pro-inflammatory cytokines, branched amino acids, and E. coli corresponding to the HY-supplemented levels (p < 0.05). However, the changes in the apparent total tract digestibility (dry matter, crude ash, and crude fat), blood glucose, butyrate, and Salmonella spp. were unaffected by the dietary HY level. Therefore, the supplementation of HY in the diet for early-weaned pigs not only supported the growth rate and immune function but also activated the beneficial bacterial growth of the early-weaned piglets.
Collapse
|
6
|
Comparative proteomic analyses reveal the metabolic aspects and biotechnological potential of nitrate assimilation in the yeast Dekkera bruxellensis. Appl Microbiol Biotechnol 2021; 105:1585-1600. [PMID: 33538877 DOI: 10.1007/s00253-021-11117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
The yeast Dekkera bruxellensis is well-known for its adaptation to industrial ethanol fermentation processes, which can be further improved if nitrate is present in the substrate. To date, the assimilation of nitrate has been considered inefficient because of the apparent energy cost imposed on cell metabolism. Recent research, however, has shown that nitrate promotes growth rate and ethanol yield when oxygen is absent from the environment. Given this, the present work aimed to identify the biological mechanisms behind this physiological behaviour. Proteomic analyses comparing four contrasting growth conditions gave some clues on how nitrate could be used as primary nitrogen source by D. bruxellensis GDB 248 (URM 8346) cells in anaerobiosis. The superior anaerobic growth in nitrate seems to be a consequence of increased cell metabolism (glycolytic pathway, production of ATP and NADPH and anaplerotic reactions providing metabolic intermediates) regulated by balanced activation of TORC1 and NCR de-repression mechanisms. On the other hand, the poor growth observed in aerobiosis is likely due to an oxidative stress triggered by nitrate when oxygen is present. These results represent a milestone regarding the knowledge about nitrate metabolism and might be explored for future use of D. bruxellensis as an industrial yeast. KEY POINTS: • Nitrate can be regarded as preferential nitrogen source for D. bruxellensis. • Oxidative stress limits the growth of D. bruxellensis in nitrate in aerobiosis. • Nitrate is a nutrient for novel industrial bioprocesses using D. bruxellensis.
Collapse
|
7
|
da Silva JM, Ribeiro KC, Teles GH, Ribeiro E, de Morais Junior MA, de Barros Pita W. Fermentation profiles of the yeast Brettanomyces bruxellensis in d-xylose and l-arabinose aiming its application as a second-generation ethanol producer. Yeast 2020; 37:597-608. [PMID: 32889766 DOI: 10.1002/yea.3519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/07/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is able to ferment the main sugars used in first-generation ethanol production. However, its employment in this industry is prohibitive because the ethanol productivity reached is significantly lower than the observed for Saccharomyces cerevisiae. On the other hand, a possible application of B. bruxellensis in the second-generation ethanol production has been suggested because this yeast is also able to use d-xylose and l-arabinose, the major pentoses released from lignocellulosic material. Although the latter application seems to be reasonable, it has been poorly explored. Therefore, we aimed to evaluate whether or not different industrial strains of B. bruxellensis are able to ferment d-xylose and l-arabinose, both in aerobiosis and oxygen-limited conditions. Three out of nine tested strains were able to assimilate those sugars. When in aerobiosis, B. bruxellensis cells exclusively used them to support biomass formation, and no ethanol was produced. Moreover, whereas l-arabinose was not consumed under oxygen limitation, d-xylose was only slightly used, which resulted in low ethanol yield and productivity. In conclusion, our results showed that d-xylose and l-arabinose are not efficiently converted to ethanol by B. bruxellensis, most likely due to a redox imbalance in the assimilatory pathways of these sugars. Therefore, despite presenting other industrially relevant traits, the employment of B. bruxellensis in second-generation ethanol production depends on the development of genetic engineering strategies to overcome this metabolic bottleneck.
Collapse
Affiliation(s)
| | | | | | - Ester Ribeiro
- Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
8
|
da Silva JM, da Silva GHTG, Parente DC, Leite FCB, Silva CS, Valente P, Ganga AM, Simões DA, de Morais MA. Biological diversity of carbon assimilation among isolates of the yeast Dekkera bruxellensis from wine and fuel-ethanol industrial processes. FEMS Yeast Res 2019; 19:5372417. [PMID: 30848782 DOI: 10.1093/femsyr/foz022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Dekkera bruxellensis is considered a spoilage yeast in winemaking, brewing and fuel-ethanol production. However, there is growing evidence in the literature of its biotechnological potential. In this work, we surveyed 29 D. bruxellensis isolates from three countries and two different industrial origins (winemaking and fuel-ethanol production) for the metabolization of industrially relevant sugars. The isolates were characterized by the determination of their maximum specific growth rates, and by testing their ability to grow in the presence of 2-deoxy-d-glucose and antimycin A. Great diversity was observed among the isolates, with fuel-ethanol isolates showing overall higher specific growth rates than wine isolates. Preferences for galactose (three wine isolates) and for cellobiose or lactose (some fuel-ethanol isolates) were observed. Fuel-ethanol isolates were less sensitive than wine isolates to glucose catabolite repression (GCR) induction by 2-deoxy-d-glucose. In strictly anaerobic conditions, isolates selected for having high aerobic growth rates were able to ferment glucose, sucrose and cellobiose at fairly high rates without supplementation of casamino acids or yeast extract in the culture medium. The phenotypic diversity found among wine and fuel-ethanol isolates suggests adaptation to these environments. A possible application of some of the GCR-insensitive, fast-growing isolates in industrial processes requiring co-assimilation of different sugars is considered.
Collapse
Affiliation(s)
- Jackeline Maria da Silva
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Department of Biochemistry, Federal University of Pernambuco, Recife, Brazil
| | | | - Denise Castro Parente
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Department of Biochemistry, Federal University of Pernambuco, Recife, Brazil
| | | | - Carolina Santos Silva
- Department of Chemical Engineering, Federal University of Pernambuco, Recife, Brazil
| | - Patrícia Valente
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
9
|
The biotechnological potential of the yeast Dekkera bruxellensis. World J Microbiol Biotechnol 2019; 35:103. [PMID: 31236799 DOI: 10.1007/s11274-019-2678-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
Dekkera bruxellensis is an industrial yeast mainly regarded as a contaminant species in fermentation processes. In winemaking, it is associated with off-flavours that cause wine spoilage, while in bioethanol production this yeast is linked to a reduction of industrial productivity by competing with Saccharomyces cerevisiae for the substrate. In spite of that, this point of view is gradually changing, mostly because D. bruxellensis is also able to produce important metabolites, such as ethanol, acetate, fusel alcohols, esters and others. This dual role is likely due to the fact that this yeast presents a set of metabolic traits that might be either industrially attractive or detrimental, depending on how they are faced and explored. Therefore, a proper industrial application for D. bruxellensis depends on the correct assembly of its central metabolic puzzle. In this sense, researchers have addressed issues regarding the physiological and genetic aspects of D. bruxellensis, which have brought to light much of our current knowledge on this yeast. In this review, we shall outline what is presently understood about the main metabolic features of D. bruxellensis and how they might be managed to improve its current or future industrial applications (except for winemaking, in which it is solely regarded as a contaminant). Moreover, we will discuss the advantages and challenges that must be overcome in order to take advantage of the full biotechnological potential of this yeast.
Collapse
|
10
|
Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must. Antonie van Leeuwenhoek 2019; 112:1177-1187. [PMID: 30830509 DOI: 10.1007/s10482-019-01250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
The presence of microbial contaminants is common in the sugarcane ethanol industry and can decrease process yield, reduce yeast cell viability and induce yeast cell flocculation. To evaluate the effect of microbial contamination on the fermentation process, we compared the use of sterilized and non-sterilized sugarcane must in the performance of Saccharomyces cerevisiae with similar fermentation conditions to those used in Brazilian mills. Non-sterilized sugarcane must had values of 103 and 108 CFU mL-1 of wild yeast and bacterial contamination, respectively; decreased total reducing sugar (TRS); and increased lactic and acetic acids, glycerol and ethanol concentrations during storage. During fermentation cycles with sterilized and non-sterilized sugarcane must, S. cerevisiae viability did not change, whereas ethanol yield varied from 74.1 to 80.2%, but it did not seem to be related to must microbial contamination. Ethanol productivity decreased throughout the fermentation cycles and was more pronounced in the last two fermentation cycles with non-sterilized must, but that may be related to the decrease in must TRS. High values of the ratio of total acid production per ethanol were reported at the end of the last two fermentation cycles conducted with non-sterilized must. Additionally, the values of wild yeast contamination increased from 102 to 103 CFU mL-1 and bacterial contamination increased from 104 to 106 CFU mL-1 when comparing the first and last fermentation cycles with non-sterilized must. In addition to the increase in microbial contamination and acid concentration, ethanol yield and yeast viability rates were not directly affected by the microbial contamination present in the non-sterilized sugarcane must.
Collapse
|
11
|
Peña-Moreno IC, Castro Parente D, da Silva JM, Andrade Mendonça A, Rojas LAV, de Morais Junior MA, de Barros Pita W. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis. J Ind Microbiol Biotechnol 2018; 46:209-220. [PMID: 30539327 DOI: 10.1007/s10295-018-2118-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
In the past few years, the yeast Dekkera bruxellensis has gained much of attention among the so-called non-conventional yeasts for its potential in the biotechnological scenario, especially in fermentative processes. This yeast has been regarded as an important competitor to Saccharomyces cerevisiae in bioethanol production plants in Brazil and several studies have reported its capacity to produce ethanol. However, our current knowledge concerning D. bruxellensis is restricted to its aerobic metabolism, most likely because wine and beer strains cannot grow in full anaerobiosis. Hence, the present work aimed to fulfil a gap regarding the lack of information on the physiology of Dekkera bruxellensis growing in the complete absence of oxygen and the relationship with assimilation of nitrate as nitrogen source. The ethanol strain GDB 248 was fully capable of growing anaerobically and produces ethanol at the same level of S. cerevisiae. The presence of nitrate in the medium increased this capacity. Moreover, nitrate is consumed faster than ammonium and this increased rate coincided with a higher speed of glucose consumption. The profile of gene expression helped us to figure out that even in anaerobiosis, the presence of nitrate drives the yeast cells to an oxidative metabolism that ultimately incremented both biomass and ethanol production. These results finally provide the clues to explain most of the success of this yeast in industrial processes of ethanol production.
Collapse
Affiliation(s)
| | - Denise Castro Parente
- Department of Genetics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| | | | | | | | | | - Will de Barros Pita
- Department of Antibiotics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil.
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, Cidade Universitária, 50740520, Recife, PE, Brazil.
| |
Collapse
|
12
|
Silva LFL, Réco AS, Peña R, Ganga MA, Ceccato-Antonini SR. Volatile phenols are produced by strains of Dekkera bruxellensis under Brazilian fuel ethanol industry-like conditions. FEMS Microbiol Lett 2018; 365:5101429. [PMID: 30239698 DOI: 10.1093/femsle/fny228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Dekkera bruxellensis is a spoilage yeast in wine and fuel ethanol fermentations able to produce volatile phenols from hydroxycinnamic acids by the action of the enzymes cinnamate decarboxylase (CD) and vinyphenol reductase (VR) in wine. However, there is no information about this ability in the bioethanol industry. This work evaluated CD and VR activities and 4-ethylphenol production from p-coumaric acid by three strains of D. bruxellensis and PE-2, an industrial Saccharomyces cerevisiae strain. Single and multiple-cycle batch fermentations in molasses and sugarcane juice were carried out. Dekkera bruxellensis strains showed similar CD activity but differences in VR activity. No production of 4-ethylphenol by S. cerevisiae in any fermentation system or media was observed. The concentrations of 4-ethylphenol peaked during active growth of D. bruxellensis in single-cycle fermentation but they were lower than in multiple-cycle fermentation. Higher concentrations were observed in molasses with molar conversion (p-coumaric acid to 4-ethylphenol) ranging from 45% to 85%. As the first report on 4-ethylphenol production in sugarcane musts by D. bruxellensis in industry-like conditions, it opens up a new avenue to investigate its effect on the viability and fermentative capacity of S. cerevisiae as well as to understand the interaction between the yeasts in the bioethanol industry.
Collapse
Affiliation(s)
- Lincon Felipe Lima Silva
- Laboratory of Molecular and Agricultural Microbiology, Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, P.O. Box 153, Araras, São Paulo State 13600-970, Brasil
| | - Aline Sotta Réco
- Laboratory of Molecular and Agricultural Microbiology, Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, P.O. Box 153, Araras, São Paulo State 13600-970, Brasil
| | - Rúben Peña
- Laboratory of Biotechnology and Applied Microbiology, Departamento de Ciencia y Tecnologia de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Manuel Umaña 050, Estacion Central, Santiago 9170201, Chile
| | - Maria Angelica Ganga
- Laboratory of Biotechnology and Applied Microbiology, Departamento de Ciencia y Tecnologia de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Manuel Umaña 050, Estacion Central, Santiago 9170201, Chile
| | - Sandra Regina Ceccato-Antonini
- Laboratory of Molecular and Agricultural Microbiology, Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, P.O. Box 153, Araras, São Paulo State 13600-970, Brasil
| |
Collapse
|
13
|
Teles GH, da Silva JM, Mendonça AA, de Morais Junior MA, de Barros Pita W. First aspects on acetate metabolism in the yeast Dekkera bruxellensis: a few keys for improving ethanol fermentation. Yeast 2018; 35:577-584. [PMID: 30006941 DOI: 10.1002/yea.3348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Dekkera bruxellensis is continuously changing its status in fermentation processes, ranging from a contaminant or spoiling yeast to a microorganism with potential to produce metabolites of biotechnological interest. In spite of that, several major aspects of its physiology are still poorly understood. As an acetogenic yeast, minimal oxygen concentrations are able to drive glucose assimilation to oxidative metabolism, in order to produce biomass and acetate, with consequent low yield in ethanol. In the present study, we used disulfiram to inhibit acetaldehyde dehydrogenase activity to evaluate the influence of cytosolic acetate on cell metabolism. D. bruxellensis was more tolerant to disulfiram than Saccharomyces cerevisiae and the use of different carbon sources revealed that the former yeast might be able to export acetate (or acetyl-CoA) from mitochondria to cytoplasm. Fermentation assays showed that acetaldehyde dehydrogenase inhibition re-oriented yeast central metabolism to increase ethanol production and decrease biomass formation. However, glucose uptake was reduced, which ultimately represents economical loss to the fermentation process. This might be the major challenge for future metabolic engineering enterprises on this yeast.
Collapse
Affiliation(s)
- Gilberto Henrique Teles
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| | - Jackeline Maria da Silva
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| | - Allyson Andrade Mendonça
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| | - Marcos Antonio de Morais Junior
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil.,Department of Genetics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| | - Will de Barros Pita
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil.,Department of Antibiotics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| |
Collapse
|
14
|
Walker GM, Walker RSK. Enhancing Yeast Alcoholic Fermentations. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:87-129. [PMID: 30342724 DOI: 10.1016/bs.aambs.2018.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of ethanol by yeast fermentation represents the largest of all global biotechnologies. Consequently, the yeast Saccharomyces cerevisiae is the world's premier industrial microorganism, which is responsible not only for the production of alcoholic beverages, including beer, wine, and distilled spirits, but also for the billions of liters of bioethanol produced annually for use as a renewable transportation fuel. Although humankind has exploited the fermentative activities of yeasts for millennia, many aspects of alcohol fermentation remain poorly understood. This chapter will review some of the key considerations in optimizing industrial alcohol fermentations with a particular emphasis on enhancement opportunities involving cell physiology and strain engineering of the major microbial ethanologen, the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Graeme M Walker
- School of Science, Engineering & Technology, Abertay University, Dundee, Scotland, United Kingdom
| | - Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
15
|
Bassi APG, Meneguello L, Paraluppi AL, Sanches BCP, Ceccato-Antonini SR. Interaction of Saccharomyces cerevisiae–Lactobacillus fermentum–Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie Van Leeuwenhoek 2018; 111:1661-1672. [DOI: 10.1007/s10482-018-1056-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
|
16
|
Reis VR, Bassi APG, Cerri BC, Almeida AR, Carvalho IGB, Bastos RG, Ceccato-Antonini SR. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express 2018; 8:23. [PMID: 29453625 PMCID: PMC5815976 DOI: 10.1186/s13568-018-0556-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast. The results indicate that in multiple-cycle batch system, the feedstock had a minor impact on the fermentation than in single-cycle batch system, however the rough yeast contamination was more harmful than the bacterial contamination in multiple-cycle batch fermentation. The inoculation of both contaminants did not potentiate the detrimental effect in any substrate. The residual sugar concentration in the fermented broth had a higher concentration of fructose than glucose for all fermentations, but in the presence of the rough yeast, the discrepancy between fructose and glucose concentrations were markedly higher, especially in molasses. The biggest problem associated with incomplete fermentation seemed to be the lower consumption rate of sugar and the reduced fructose preference of the rough yeast rather than the lower invertase activity. Lower ethanol production, acetate production and higher residual sugar concentration are characteristics strongly associated with the rough yeast strain and they were not potentiated with the inoculation of L. fermentum.
Collapse
|
17
|
Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis. Appl Environ Microbiol 2016; 82:4673-4681. [PMID: 27235432 DOI: 10.1128/aem.00515-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid.
Collapse
|
18
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
19
|
Moktaduzzaman M, Galafassi S, Vigentini I, Foschino R, Corte L, Cardinali G, Piškur J, Compagno C. Strain-dependent tolerance to acetic acid in Dekkera bruxellensis. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1115-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
20
|
Blomqvist J, Passoth V. Dekkera bruxellensis--spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness. FEMS Yeast Res 2015; 15:fov021. [PMID: 25956542 DOI: 10.1093/femsyr/fov021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 02/04/2023] Open
Abstract
Dekkera bruxellensis is a non-conventional yeast normally considered a spoilage organism in wine (off-flavours) and in the bioethanol industry. But it also has potential as production yeast. The species diverged from Saccharomyces cerevisiae 200 mya, before the whole genome duplication. However, it displays similar characteristics such as being Crabtree- and petite positive, and the ability to grow anaerobically. Partial increases in ploidy and promoter rewiring may have enabled evolution of the fermentative lifestyle in D. bruxellensis. On the other hand, it has genes typical for respiratory yeasts, such as for complex I or the alternative oxidase AOX1. Dekkera bruxellensis grows more slowly than S. cerevisiae, but produces similar or greater amounts of ethanol, and very low amounts of glycerol. Glycerol production represents a loss of energy but also functions as a redox sink for NADH formed during synthesis of amino acids and other compounds. Accordingly, anaerobic growth required addition of certain amino acids. In spite of its slow growth, D. bruxellensis outcompeted S. cerevisiae in glucose-limited cultures, indicating a more efficient energy metabolism and/or higher affinity for glucose. This review tries to summarize the latest discoveries about evolution, physiology and metabolism, and biotechnological potential of D. bruxellensis.
Collapse
Affiliation(s)
- Johanna Blomqvist
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Volkmar Passoth
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|
21
|
Tiukova I, Eberhard T, Passoth V. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Biotechnol Appl Biochem 2014; 61:40-4. [PMID: 23772864 PMCID: PMC4033568 DOI: 10.1002/bab.1135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/08/2013] [Indexed: 11/23/2022]
Abstract
Lactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D. bruxellensis. Lower cell numbers of both the yeasts and L. vini as well as a decrease in ethanol and lactate formation in mixed batch cultures compared with pure cultures were noted. L. vini formed cell aggregates (flocs) in all cultivation media with different shapes in Man–Rogosa–Sharpe and yeast extract–peptone–dextrose media. Flocs’ size and proportion of cells bound to flocs increased with increasing ethanol concentration. In coculture, formation of lactic acid bacteria–yeast cell aggregates consisting of a bacterial core with an outer layer of yeast cells was observed. L. vini–D. bruxellensis flocs had a bigger surface, due to cells protruding from the pseudomycelium. The involvement of mannose residues in the flocculation between L. vini and yeasts was tested. The presence of mannose induced deflocculation in a concentration-dependent manner. Less mannose was required for the deflocculation of D. bruxellensis as compared with S. cerevisiae.
Collapse
Affiliation(s)
- Ievgeniia Tiukova
- Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
22
|
de Souza RB, de Menezes JAS, de Souza RDFR, Dutra ED, de Morais MA. Mineral composition of the sugarcane juice and its influence on the ethanol fermentation. Appl Biochem Biotechnol 2014; 175:209-22. [PMID: 25248994 DOI: 10.1007/s12010-014-1258-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
In the present work, we evaluated the mineral composition of three sugarcane varieties from different areas in northeast Brazil and their influence on the fermentation performance of Saccharomyces cerevisiae. The mineral composition was homogeneous in the different areas investigated. However, large variation coefficients were observed for concentrations of copper, magnesium, zinc and phosphorus. Regarding the fermentation performances, the sugarcane juices with the highest magnesium concentration showed the highest ethanol yield. Synthetic media supplemented with magnesium also showed the highest yield (0.45 g g(-1)) while the excess of copper led to the lowest yield (0.35 g g(-1)). According to our results, the magnesium is the principal responsible for the increase on the ethanol yield, and it also seems to be able to disguise the inhibitory effects of the toxic minerals present in the sugarcane juice.
Collapse
Affiliation(s)
- Rafael Barros de Souza
- Interdepartmental Research Group in Metabolic Engineering, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, 50670-901, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
23
|
Neto AGB, Pestana-Calsa MC, de Morais MA, Calsa T. Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis. J Proteomics 2014; 104:104-11. [PMID: 24667144 DOI: 10.1016/j.jprot.2014.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/24/2014] [Accepted: 03/12/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED Dekkera bruxellensis is an industrially relevant yeast, especially in bioethanol production. The capacity of D. bruxellensis to assimilate nitrate can confer advantages of this yeast over Saccharomyces cerevisiae at industrial conditions. In the present work we present the consequences of nitrate assimilation, using ammonium as reference, to the proteomics of D. bruxellensis. Thirty-four protein spots were overproduced in nitrate medium and were identified by MS-TOF/TOF analysis and were putatively identified by using local Mascot software. Apart from the overexpression of genes of nitrate metabolism, ATP synthesis and PPP and TCA pathways previously reported, cultivation on nitrate induced overproduction of glycolytic enzymes, which corroborate the high energy demand and NADH availability for nitrate assimilation. Overproduction of alcohol dehydrogenase (Adh) protein was also observed. Proteomic profile of D. bruxellensis cultivated in nitrate and described in the present work agrees with the hypothesis of metabolic flux regulation, making available the energy in the form of NADH to support nitrate assimilation. This work contributes with an initial picture of proteins presenting differential accumulation in industrial contaminant yeast, in strict association with possible metabolic responses to nitrate as sole nitrogen source in cultivation medium. BIOLOGICAL SIGNIFICANCE The present study investigated the gene expression at translational level of yeast D. bruxellensis for nitrate assimilation. This study corroborated with biological models that consider the ability to assimilate this nitrogen source confers advantages on this yeast during the fermentation process industry. However, larger studies are needed in this way as our group is investigating new proteins under LC-MS/MS approach. Together, these studies will help in understanding the operation of networks and cellular regulation of the process of assimilation of nitrogen sources for the D. bruxellensis, unravelling new aspects of the physiology of this yeast by proteomic analysis. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Adauto Gomes Barbosa Neto
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria Clara Pestana-Calsa
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil; Environmental Engineering Area, Universidade Maurício de Nassau, Recife, Brazil
| | - Marcos Antonio de Morais
- Laboratory of Microbial Genetics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil
| | - Tercilio Calsa
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
24
|
Reis ALS, de Fátima Rodrigues de Souza R, Baptista Torres RRN, Leite FCB, Paiva PMG, Vidal EE, de Morais MA. Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain. SPRINGERPLUS 2014; 3:38. [PMID: 24498580 PMCID: PMC3909126 DOI: 10.1186/2193-1801-3-38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 12/05/2022]
Abstract
The discovery of a novel yeast with a natural capacity to produce ethanol from lignocellulosic substrates (second-generation ethanol) is of great significance for bioethanol technology. While there are some yeast strains capable of assimilating cellobiose in aerobic laboratory conditions, the predominant sugar in the treatment of lignocellulosic material, little is known about this ability in real industrial conditions. Fermentations designed to simulate industrial conditions were conducted in synthetic medium with glucose, sucrose, cellobiose and hydrolyzed pre-treated cane bagasse as a different carbon source, with the aim of further characterizing the fermentation capacity of a promising Dekkera bruxellensis yeast strain, isolated from the bioethanol process in Brazil. As a result, it was found (for the first time in oxygen-limiting conditions) that the strain Dekkera bruxellensis GDB 248 could produce ethanol from cellobiose. Moreover, it was corroborated that the cellobiase activity characterizes the enzyme candidate in semi-purified extracts (β-glucosidase). In addition, it was demonstrated that GDB 248 strain had the capacity to produce a higher acetic acid concentration than ethanol and glycerol, which confirms the absence of the Custer effect with this strain in oxygen-limiting conditions. Moreover, it is also being suggested that D. bruxellensis could benefit Saccharomyces cerevisiae and outcompete it in the industrial environment. In this way, it was confirmed that D. bruxellensis GDB 248 has the potential to produce ethanol from cellobiose, and is a promising strain for the fermentation of lignocellulosic substrates.
Collapse
Affiliation(s)
- Alexandre Libanio Silva Reis
- Bioprocessing Laboratory, CETENE, 50740-540 Recife, PE, Brazil ; Centro de Tecnologias Estratégicas do Nordeste - CETENE, Av. Prof. Luiz Freire, 01, Cidade Universitária, 50740-540 Recife, PE, Brasil
| | | | | | | | | | | | - Marcos Antonio de Morais
- Bioprocessing Laboratory, CETENE, 50740-540 Recife, PE, Brazil ; Interdepartmental Research Group on Metabolic Engineering, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil ; Department of Genetics, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil ; Department of Biochemistry, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
25
|
Pereira LF, Lucatti E, Basso LC, de Morais MA. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Antonie van Leeuwenhoek 2013; 105:481-9. [PMID: 24370978 DOI: 10.1007/s10482-013-0100-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
The yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions. The results have confirmed the previous reports of the low capacity of D. bruxellensis cells to assimilate sucrose, which seems to be the main factor that can cause a bottleneck in its use as fermentative yeast. Furthermore, the cells of D. bruxellensis showed a tendency to deviate most of sugar available for biomass and organic acids (lactic and acetic) compared with Saccharomyces cerevisiae, when calculated on the basis of their respective yields. As well as this, the acetate production from molasses medium by both yeasts was in marked contrast with the previous data on sugarcane juice. Glycerol and ethanol production by D. bruxellensis cells achieved levels of 33 and 53 % of the S. cerevisiae, respectively. However, the ethanol yield was similar for both yeasts. It is worth noting that this yeast did not accumulate trehalose when the intracellular glycogen content was 30 % lower than in S. cerevisiae. The lack of trehalose did not affect yeast viability under fermentation conditions. Thus, the adaptive success of D. bruxellensis under industrial fermentation conditions seems to be unrelated to the production of these reserve carbohydrates.
Collapse
Affiliation(s)
- Luciana Filgueira Pereira
- Interdepartmental Research Group on Metabolic Engineering, Federal University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
26
|
Meneghin MC, Bassi APG, Codato CB, Reis VR, Ceccato-Antonini SR. Fermentative and growth performances ofDekkera bruxellensisin different batch systems and the effect of initial low cell counts in co-cultures withSaccharomyces cerevisiae. Yeast 2013; 30:295-305. [DOI: 10.1002/yea.2959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/21/2013] [Accepted: 05/01/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Maria Cristina Meneghin
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Ana Paula Guarnieri Bassi
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Carolina Brito Codato
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Vanda Renata Reis
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Sandra Regina Ceccato-Antonini
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| |
Collapse
|
27
|
Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C. Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products. ACTA ACUST UNITED AC 2013; 40:297-303. [DOI: 10.1007/s10295-012-1229-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
Abstract
Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the “Custers effect”, in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes.
Collapse
Affiliation(s)
- Silvia Galafassi
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Claudia Capusoni
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Md Moktaduzzaman
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Concetta Compagno
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| |
Collapse
|
28
|
Bassi APG, Silva JCGD, Reis VR, Ceccato-Antonini SR. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae. World J Microbiol Biotechnol 2013; 29:1661-76. [DOI: 10.1007/s11274-013-1329-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 03/18/2013] [Indexed: 01/23/2023]
|
29
|
de Barros Pita W, Tiukova I, Leite FCB, Passoth V, Simões DA, de Morais MA. The influence of nitrate on the physiology of the yeast Dekkera bruxellensis grown under oxygen limitation. Yeast 2013; 30:111-7. [PMID: 23440690 DOI: 10.1002/yea.2945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/30/2013] [Indexed: 11/07/2022] Open
Abstract
A previous study showed that the use of nitrate by Dekkera bruxellensis might be an advantageous trait when ammonium is limited in sugarcane substrate for ethanol fermentation. The aim of the present work was to evaluate the influence of nitrate on the yeast physiology during cell growth in different carbon sources under oxygen limitation. If nitrate was the sole source of nitrogen, D. bruxellensis cells presented slower growth, diminished sugar consumption and growth-associated ethanol production, when compared to ammonium. These results were corroborated by the increased expression of genes involved in the pentose phosphate (PP) pathway, the tricarboxylic acid (TCA) cycle and ATP synthesis. The presence of ammonium in the mixed medium restored most parameters to the standard conditions. This work may open up a line of investigation to establish the connection between nitrate assimilation and energetic metabolism in D. bruxellensis and their influence on its fermentative capacity in oxygen-limited or oxygen-depleted conditions.
Collapse
Affiliation(s)
- Will de Barros Pita
- Interdepartmental Research Group on Metabolic Engineering, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Leite FCB, Basso TO, Pita WDB, Gombert AK, Simões DA, de Morais MA. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 2012; 13:34-43. [PMID: 23078341 DOI: 10.1111/1567-1364.12007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/07/2012] [Accepted: 09/07/2012] [Indexed: 12/01/2022] Open
Abstract
Dekkera bruxellensis has been described as the major contaminant yeast of industrial ethanol production, although little is known about its physiology. The aim of this study was to investigate the growth of this yeast in diverse carbon sources and involved conducting shake-flask and glucose- or sucrose-limited chemostats experiments, and from the chemostat data, the stoichiometry of biomass formation during aerobic growth was established. As a result of the shake-flask experiments with hexoses or disaccharides, the specific growth rates were calculated, and a different behavior in rich and mineral medium was observed concerning to profile of acetate and ethanol production. In C-limited chemostats conditions, the metabolism of this yeast was completely respiratory, and the biomass yields reached values of 0.62 gDW gS(-1) . In addition, glucose pulses were applied to the glucose- or sucrose-limited chemostats. These results showed that D. bruxellensis has a short-term Crabtree effect. While the glucose pulse was at the sucrose-limited chemostat, sucrose accumulated at the reactor, indicating the presence of a glucose repression mechanism in D. bruxellensis.
Collapse
|