1
|
Colón‐González M, Aguirre‐Dugua X, Guerrero‐Osornio MG, Avelar‐Rivas JA, DeLuna A, Mancera E, Morales L. Thriving in Adversity: Yeasts in the Agave Fermentation Environment. Yeast 2025; 42:16-30. [PMID: 39967574 PMCID: PMC11891984 DOI: 10.1002/yea.3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Agave spirits have gained global recognition and hold a central position within the cultural heritage of Mexico. Traditional distilleries, characterized by open fermentations driven by local microbial communities, persist despite the rise of industrial-scale counterparts. In this review, we explore the environmental conditions and production practices that make the must of cooked agave stems a unique habitat for colonizing microorganisms. Additionally, we review selected studies that have characterized yeast species within these communities, with a focus on their metabolic traits and genomic features. Over 50 fungal species, predominantly Saccharomycetales and few Basidiomycetes, along with a similar number of lactic and acetic acid bacteria, have been identified. Despite variations in the chemical composition of the agave substrates and diversity of cultural practices associated with each traditional fermentation process, yeast species such as Saccharomyces cerevisiae, Kluyveromyces marxianus, Torulaspora delbrueckii, and several Pichia species have been consistently isolated across all agave spirit-producing regions. Importantly, cooked agave must is rich in fermentable sugars, yet it also contains inhibitory compounds that influence the proliferation dynamics of the microbial community. We discuss some of the genetic traits that may enable yeasts to flourish in this challenging environment and how human practices may shape microbial diversity by promoting the selection of microbes that are well-adapted to agave fermentation environments. The increasing demand for agave spirits, combined with concerns about the preservation of natural resources and cultural practices associated with their production, underscores the need to deepen our understanding of all key players, including the yeast communities involved.
Collapse
Affiliation(s)
- Maritrini Colón‐González
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoQuerétaroMéxico
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
| | - Xitlali Aguirre‐Dugua
- Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)Ciudad de MéxicoMéxico
| | - Mariana G. Guerrero‐Osornio
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoQuerétaroMéxico
- Instituto de EcologíaUniversidad Nacional Autónoma de México, Posgrado en Ciencias BiológicasCiudad de MéxicoMéxico
| | - J. Abraham Avelar‐Rivas
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
| | - Alexander DeLuna
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
| | - Eugenio Mancera
- Departamento de Ingeniería GenéticaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad IrapuatoIrapuatoMéxico
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoQuerétaroMéxico
| |
Collapse
|
2
|
Factors affecting yeast ethanol tolerance and fermentation efficiency. World J Microbiol Biotechnol 2020; 36:114. [DOI: 10.1007/s11274-020-02881-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023]
|
3
|
Ibáñez C, Pérez-Torrado R, Morard M, Toft C, Barrio E, Querol A. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. Int J Food Microbiol 2017; 257:262-270. [PMID: 28711856 DOI: 10.1016/j.ijfoodmicro.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 11/18/2022]
Abstract
Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts.
Collapse
Affiliation(s)
- Clara Ibáñez
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Miguel Morard
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Christina Toft
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must. ACTA ACUST UNITED AC 2017; 44:63-74. [DOI: 10.1007/s10295-016-1871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Collapse
|
5
|
Shui W, Xiong Y, Xiao W, Qi X, Zhang Y, Lin Y, Guo Y, Zhang Z, Wang Q, Ma Y. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae. Mol Cell Proteomics 2015; 14:1885-97. [PMID: 25926660 DOI: 10.1074/mcp.m114.045781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 01/25/2023] Open
Abstract
Saccharomyces cerevisiae has been intensively studied in responses to different environmental stresses such as heat shock through global omic analysis. However, the S. cerevisiae industrial strains with superior thermotolerance have not been explored in any proteomic studies for elucidating the tolerance mechanism. Recently a new diploid strain was obtained through evolutionary engineering of a parental industrial strain, and it exhibited even higher resistance to prolonged thermal stress. Herein, we performed iTRAQ-based quantitative proteomic analysis on both the parental and evolved industrial strains to further understand the mechanism of thermotolerant adaptation. Out of ∼ 2600 quantifiable proteins from biological quadruplicates, 193 and 204 proteins were differentially regulated in the parental and evolved strains respectively during heat-stressed growth. The proteomic response of the industrial strains cultivated under prolonged thermal stress turned out to be substantially different from that of the laboratory strain exposed to sudden heat shock. Further analysis of transcription factors underlying the proteomic perturbation also indicated the distinct regulatory mechanism of thermotolerance. Finally, a cochaperone Mdj1 and a metabolic enzyme Adh1 were selected to investigate their roles in mediating heat-stressed growth and ethanol production of yeasts. Our proteomic characterization of the industrial strain led to comprehensive understanding of the molecular basis of thermotolerance, which would facilitate future improvement in the industrially important trait of S. cerevisiae by rational engineering.
Collapse
Affiliation(s)
- Wenqing Shui
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Yun Xiong
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Weidi Xiao
- §College of Life Sciences and Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Xianni Qi
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yong Zhang
- §College of Life Sciences and Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Yuping Lin
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yufeng Guo
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhidan Zhang
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qinhong Wang
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Yanhe Ma
- From the ‡Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
6
|
Flores JA, Gschaedler A, Amaya-Delgado L, Herrera-López EJ, Arellano M, Arrizon J. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production. BIORESOURCE TECHNOLOGY 2013; 146:267-273. [PMID: 23941710 DOI: 10.1016/j.biortech.2013.07.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application.
Collapse
Affiliation(s)
- Jose-Axel Flores
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jal., Mexico
| | - Anne Gschaedler
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jal., Mexico
| | - Lorena Amaya-Delgado
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jal., Mexico
| | - Enrique J Herrera-López
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jal., Mexico
| | - Melchor Arellano
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jal., Mexico
| | - Javier Arrizon
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jal., Mexico.
| |
Collapse
|
7
|
Amaya-Delgado L, Herrera-López EJ, Arrizon J, Arellano-Plaza M, Gschaedler A. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation. World J Microbiol Biotechnol 2013; 29:875-81. [DOI: 10.1007/s11274-012-1242-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
|