1
|
Kong Q, Lin S, Wang R, Chen S, Ge K, Chen D. Changes in quality, endogenous enzyme activities, and their relationships during post-harvest storage of Phlebopus portentosus- an edible fungus. Food Chem 2025; 474:143240. [PMID: 39923520 DOI: 10.1016/j.foodchem.2025.143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The postharvest quality of Phlebopus portentosus, a valuable edible fungus, is highly susceptible to spoilage due to endogenous enzymes during storage. This study investigated changes in firmness, weight loss, color, browning degree, malondialdehyde concentration, oxidation level, enzyme activities, and volatile compounds in P. portentosus during storage at 4 °C and 25 °C, alongside their interrelationships. Both storage conditions exhibited similar trends in quality deterioration, with slower changes at 4 °C and a critical turning point observed on the 4th day. The activities of polyphenol oxidase (PPO), peroxidase (POD), lipoxygenase (LOX), and phenylalanine ammonia-lyase (PAL) increased during storage, significantly impacting browning, oxidation, and volatile compounds, as confirmed by Pearson correlation analysis. These enzymes might be key factors affecting the postharvest quality of P. portentosus. This study would provide a theoretical basis for the development of post-harvest preservation techniques for P. portentosus.
Collapse
Affiliation(s)
- Qinglong Kong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Ruixue Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Siqi Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Kailun Ge
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Dong Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China.
| |
Collapse
|
2
|
Wang X, Hatta S, Matsui D, Imamura H, Wakayama M. Expression and characterization of C-terminal truncated mutants of γ-glutamyltranspeptidase II (PaGGTII) from Pseudomonas aeruginosa PAO1. Protein Expr Purif 2023:106321. [PMID: 37315656 DOI: 10.1016/j.pep.2023.106321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
The gene encoding γ-glutamyltranspeptidase II (PaGGTII) from Pseudomonas aeruginosa PAO1 was cloned in Escherichia coli. Recombinant PaGGTII showed a weak activity (0.0332 U/mg), and it can be easily inactivated. Multiple alignment of microbial GGTs showed the redundancy of the C-terminal of the small subunit of PaGGTII in length. The truncation of eight amino acid residues at the C-terminal of PaGGTII remarkably improved the activity and stability of the enzyme (PaGGTIIΔ8; 0.388 U/mg). Further truncation at the C-terminal also provided the enzyme relatively higher activity (PaGGTIIΔ9, -Δ10, -Δ11, and -Δ12). Among C-terminal truncated mutants, we focused on PaGGTIIΔ8 and examined the effect of C-terminal amino acid residues on the properties of PaGGTIIΔ8 because the activity of PaGGTII was found to be greatly improved when 8 amino acid residues were truncated. Various mutant enzymes with different C-terminal amino acid residues were constructed. They were expressed in E. coli and purified to homogeneity by ion-exchange chromatography. The properties of PaGGTIIΔ8 and the mutants obtained from mutation at E569 were characterized. Km and kcat of PaGGTIIΔ8 for γ-glutamyl-p-nitroanilide (γ-GpNA) were 8.05 mM and 15.49 s-1, respectively. PaGGTIIΔ8E569Y showed the highest catalytic efficiency for γ-GpNA with a kcat/Km of 12.55 mM-1 s-1. Mg2+, Ca2+, and Mn2+ exhibited positive effects on the catalytic activity for PaGGTIIΔ8 and its ten E569 mutants.
Collapse
Affiliation(s)
- Xinjia Wang
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Seiji Hatta
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Daisuke Matsui
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Hiroshi Imamura
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Tamuramachi 1266, Nagahama, Shiga, 526-0829, Japan
| | - Mamoru Wakayama
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
3
|
Chang M, Ma J, Sun Y, Tian L, Liu L, Chen Q, Zhang Z, Wan X, Sun J. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). PLANT, CELL & ENVIRONMENT 2023; 46:1596-1609. [PMID: 36757089 DOI: 10.1111/pce.14561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
- College of Horticulture, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
4
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
5
|
Akinola SA, Ayangbenro AS, Babalola OO. The diverse functional genes of maize rhizosphere microbiota assessed using shotgun metagenomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3193-3201. [PMID: 33215702 DOI: 10.1002/jsfa.10948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/31/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The geographical diversification in chemical, biological and physical properties of plant biospheres instigates heterogenicity in the proliferation of important soil microbiome. Controlling functions and structure of plant rhizosphere from a better understanding and prediction of a plant's immediate environment will help assess plant-microbe interplay, improve the productivity of plant ecosystems and improve plant response to adverse soil conditions. Here we characterized functional genes of the microbial community of maize rhizosphere using a culture-independent method. RESULTS Our metadata showed microbial genes involved in nitrogen fixation, phosphate solubilization, quorum sensing molecules, trehalose, siderophore production, phenazine biosynthesis protein, daunorubicin resistance, acetoin, 1-aminocyclopropane-1-carboxylate deaminase, 4-hydroxybenzoate, disease control and stress-reducing genes (superoxidase dismutase, catalase, peroxidase, etc.). β-Diversity showed that there is a highly significant difference between most of the genes mined from rhizosphere soil samples and surrounding soils. CONCLUSIONS The high relative abundance of stress-reducing genes mined from this study showed that the sampling sites harbor not only important plant-beneficial organisms but also a hotspot for developing bio-fertilizers. Nevertheless, since most of these organisms are unculturable, mapping cultivation strategies for their growth could make them readily available as bio-inoculants and possible biotechnological applications in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Saheed Adekunle Akinola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
6
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
7
|
Ou-Yang J, Li Y, Jiang WL, He SY, Liu HW, Li CY. Fluorescence-Guided Cancer Diagnosis and Surgery by a Zero Cross-Talk Ratiometric Near-Infrared γ-Glutamyltranspeptidase Fluorescent Probe. Anal Chem 2018; 91:1056-1063. [DOI: 10.1021/acs.analchem.8b04416] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Ou-Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Shuang-Yan He
- Hunan SJA Laboratory
Animal Co., Ltd., Changsha 400125, PR China
| | - Hong-Wen Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
8
|
Ou-Yang J, Li YF, Wu P, Jiang WL, Liu HW, Li CY. Detecting and Imaging of γ-Glutamytranspeptidase Activity in Serum, Live Cells, and Pathological Tissues with a High Signal-Stability Probe by Releasing a Precipitating Fluorochrome. ACS Sens 2018; 3:1354-1361. [PMID: 29877700 DOI: 10.1021/acssensors.8b00274] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
γ-Glutamytranspeptidase (GGT) is a significant tumor-related biomarker that overexpresses in several tumor cells. Accurate detection and imaging of GGT activity in serum, live cells, and pathological tissues hold great significance for cancer diagnosis, treatment, and management. Recently developed small molecule fluorescent probes for GGT tend to diffuse to the whole cytoplasm and then translocate out of live cells after enzymatic reaction, which make them fail to provide high spatial resolution and long-term imaging in biological systems. To address these problems, a novel fluorescent probe (HPQ-PDG) which releases a precipitating fluorochrome upon the catalysis of GGT is designed and synthesized. HPQ-PDG is able to detect GGT activity with high spatial resolution and good signal-stability. The large Stokes shift of the probe enables it to detect the activity of GGT in serum samples with high sensitivity. To our delight, the probe is used for imaging GGT activity in live cells with the ability of discriminating cancer cells from normal cells. What's more, we successfully apply it for pathological tissues imaging, with the results indicating that the potential application of HPQ-PDG in histopathological examination. All these results demonstrate the potential application of HPQ-PDG in the clinic.
Collapse
Affiliation(s)
- Juan Ou-Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yong-Fei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Ping Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Hong-Wen Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
9
|
Luo Z, Huang Z, Li K, Sun Y, Lin J, Ye D, Chen HY. Targeted Delivery of a γ-Glutamyl Transpeptidase Activatable Near-Infrared-Fluorescent Probe for Selective Cancer Imaging. Anal Chem 2018; 90:2875-2883. [PMID: 29376641 DOI: 10.1021/acs.analchem.7b05022] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The noninvasive and specific detection of cancer cells in living subjects has been essential for the success of cancer diagnoses and treatments. Herein, we report a strategy of combining an αvβ3-integrin-receptor-targetable ligand, c-RGD, with the γ-glutamyl transpeptidase (GGT)-recognizable substrate, γ-glutamate (γ-Glu), to develop a tumor-targeting and GGT-activatable near-infrared (NIR)-fluorescent probe for the noninvasive imaging of tumors in living mice. We demonstrated that the probe's fluorescence was off initially, but when the γ-Glu in the probe was specifically cleaved by GGT, the fluorescent product was released and could be selectively taken up by U87MG-tumor cells via αvβ3-receptor-mediated endocytosis. Remarkably, enhanced intracellular NIR fluorescence distributed mainly in the lysosomes was observed in the tumor cells only, showing that the probe was capable of differentiating the tumor cells from the GGT-positive, αvβ3-deficient normal cells. Moreover, the probe also showed a high selectivity for the real-time and noninvasive detection of GGT activity in xenograft U87MG tumors following iv administration. This study reveals the advantage of using a combination of receptor-mediated cell uptake and molecular-target-triggered activation to design molecular probes for improved cancer imaging, which could facilitate effective cancer diagnoses.
Collapse
Affiliation(s)
- Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Ke Li
- Key Laboratory of Nuclear Medicine of the Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi 214063, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine of the Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi 214063, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
10
|
Luo Z, Feng L, An R, Duan G, Yan R, Shi H, He J, Zhou Z, Ji C, Chen HY, Ye D. Activatable Near-Infrared Probe for Fluorescence Imaging of γ-Glutamyl Transpeptidase in Tumor Cells and In Vivo. Chemistry 2017; 23:14778-14785. [PMID: 28653778 DOI: 10.1002/chem.201702210] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 03/11/2025]
Abstract
γ-Glutamyl transpeptidase (GGT) is a cell-membrane-bound enzyme that is involved in various physiological and pathological processes and is regarded as a potential biomarker for many malignant tumors, precise detection of which is useful for early cancer diagnosis. Herein, a new GGT-activatable near-infrared (NIR) fluorescence imaging probe (GANP) by linking of a GGT-recognitive substrate γ-glutamate (γ-Glu) and a NIR merocyanine fluorophore (mCy-Cl) with a self-immolative linker p-aminobenzyl alcohol (PABA) is reported. GANP was stable under physiological conditions, but could be efficiently activated by GGT to generate ≈100-fold enhanced fluorescence, enabling high sensitivity (detection limit of ≈3.6 mU L-1 ) and specificity for the real-time imaging of GGT activity as well as rapid evaluation of the inhibition efficacy of GGT inhibitors in living tumor cells. Notably, the deep tissue penetration ability of NIR fluorescence could further allow GANP to image GGT in frozen tumor tissue slices with large penetration depth (>100 μm) and in xenograft tumors in living mice. This GGT activatable NIR fluorescence imaging probe could facilitate the study and diagnosis of other GGT-correlated diseases in vivo.
Collapse
Affiliation(s)
- Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Liandong Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guanfu Duan
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Runqi Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua Shi
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Jian He
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Zhengyang Zhou
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Changge Ji
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Saini M, Bindal S, Gupta R. Heterologous expression of γ-glutamyl transpeptidase from Bacillus atrophaeus GS-16 and its application in the synthesis of γ- d -glutamyl- l -tryptophan, a known immunomodulatory peptide. Enzyme Microb Technol 2017; 99:67-76. [DOI: 10.1016/j.enzmictec.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/02/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|