1
|
Cámara E, Mormino M, Siewers V, Nygård Y. Saccharomyces cerevisiae strains performing similarly during fermentation of lignocellulosic hydrolysates show pronounced differences in transcriptional stress responses. Appl Environ Microbiol 2024; 90:e0233023. [PMID: 38587374 PMCID: PMC11107148 DOI: 10.1128/aem.02330-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Improving our understanding of the transcriptional changes of Saccharomyces cerevisiae during fermentation of lignocellulosic hydrolysates is crucial for the creation of more efficient strains to be used in biorefineries. We performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. Many of the differently expressed genes identified among the strains have previously been reported to be important for tolerance to lignocellulosic hydrolysates or inhibitors therein. Our study demonstrates that stress responses typically identified during aerobic conditions such as glutathione metabolism, osmotolerance, and detoxification processes also are important for anaerobic processes. Overall, the transcriptomic responses were largely strain dependent, and we focused our study on similarities and differences in the transcriptomes of the LBCM strains. The expression of sugar transporter-encoding genes was higher in LBCM31 compared with LBCM109 that showed high expression of genes involved in iron metabolism and genes promoting the accumulation of sphingolipids, phospholipids, and ergosterol. These results highlight different evolutionary adaptations enabling S. cerevisiae to strive in lignocellulosic hydrolysates and suggest novel gene targets for improving fermentation performance and robustness. IMPORTANCE The need for sustainable alternatives to oil-based production of biochemicals and biofuels is undisputable. Saccharomyces cerevisiae is the most commonly used industrial fermentation workhorse. The fermentation of lignocellulosic hydrolysates, second-generation biomass unsuited for food and feed, is still hampered by lowered productivities as the raw material is inhibitory for the cells. In order to map the genetic responses of different S. cerevisiae strains, we performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. While the response to inhibitors of S. cerevisiae has been studied earlier, this has in previous studies been done in aerobic conditions. The transcriptomic analysis highlights different evolutionary adaptations among the different S. cerevisiae strains and suggests novel gene targets for improving fermentation performance and robustness.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Mormino
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
2
|
Mormino M, Lenitz I, Siewers V, Nygård Y. Identification of acetic acid sensitive strains through biosensor-based screening of a Saccharomyces cerevisiae CRISPRi library. Microb Cell Fact 2022; 21:214. [PMID: 36243715 PMCID: PMC9571444 DOI: 10.1186/s12934-022-01938-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acetic acid tolerance is crucial for the development of robust cell factories for conversion of lignocellulosic hydrolysates that typically contain high levels of acetic acid. Screening mutants for growth in medium with acetic acid is an attractive way to identify sensitive variants and can provide novel insights into the complex mechanisms regulating the acetic acid stress response. Results An acetic acid biosensor based on the Saccharomyces cerevisiae transcription factor Haa1, was used to screen a CRISPRi yeast strain library where dCas9-Mxi was set to individually repress each essential or respiratory growth essential gene. Fluorescence-activated cell sorting led to the enrichment of a population of cells with higher acetic acid retention. These cells with higher biosensor signal were demonstrated to be more sensitive to acetic acid. Biosensor-based screening of the CRISPRi library strains enabled identification of strains with increased acetic acid sensitivity: strains with gRNAs targeting TIF34, MSN5, PAP1, COX10 or TRA1. Conclusions This study demonstrated that biosensors are valuable tools for screening and monitoring acetic acid tolerance in yeast. Fine-tuning the expression of essential genes can lead to altered acetic acid tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01938-7.
Collapse
Affiliation(s)
- Maurizio Mormino
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ibai Lenitz
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
3
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Kubisch C, Kövilein A, Aliyu H, Ochsenreither K. RNA-Seq Based Transcriptome Analysis of Aspergillus oryzae DSM 1863 Grown on Glucose, Acetate and an Aqueous Condensate from the Fast Pyrolysis of Wheat Straw. J Fungi (Basel) 2022; 8:765. [PMID: 35893132 PMCID: PMC9394295 DOI: 10.3390/jof8080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis. Functional enrichment analysis of 3463 significantly differentially expressed (log2FC >2 & FDR < 0.05) genes revealed similar metabolic tendencies for both acetate and PAC, as upregulated genes in these cultures were mainly associated with ribosomes and RNA processing, whereas transmembrane transport was downregulated. Unsurprisingly, metabolic pathway analysis revealed that glycolysis/gluconeogenesis and starch and sucrose metabolism were upregulated for glucose, whereas glyoxylate and the tricarboxylic acid (TCA) cycle were important carbon utilization pathways for acetate and PAC, respectively. Moreover, genes involved in the biosynthesis of various amino acids such as arginine, serine, cysteine and tryptophan showed higher expression in the acetate-containing cultures. Direct comparison of the transcriptome profiles of acetate and PAC revealed that pyruvate metabolism was the only significantly different metabolic pathway and was overexpressed in the PAC cultures. Upregulated genes included those for methylglyoxal degradation and alcohol dehydrogenases, which thus represent potential targets for the further improvement of fungal PAC tolerance.
Collapse
Affiliation(s)
- Christin Kubisch
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.K.); (H.A.); (K.O.)
| | | | | | | |
Collapse
|
5
|
Stovicek V, Dato L, Almqvist H, Schöpping M, Chekina K, Pedersen LE, Koza A, Figueira D, Tjosås F, Ferreira BS, Forster J, Lidén G, Borodina I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:22. [PMID: 35219341 PMCID: PMC8882276 DOI: 10.1186/s13068-022-02121-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Marie Schöpping
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark.,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ksenia Chekina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark
| | - Diogo Figueira
- Biotrend S.A., Biocant Park Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Freddy Tjosås
- Borregaard ApS, Hjalmar Wessels vei 6, 1721, Sarpsborg, Norway
| | | | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Crosstalk between Yeast Cell Plasma Membrane Ergosterol Content and Cell Wall Stiffness under Acetic Acid Stress Involving Pdr18. J Fungi (Basel) 2022; 8:jof8020103. [PMID: 35205858 PMCID: PMC8880318 DOI: 10.3390/jof8020103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Acetic acid is a major inhibitory compound in several industrial bioprocesses, in particular in lignocellulosic yeast biorefineries. Cell envelope remodeling, involving cell wall and plasma membrane composition, structure and function, is among the mechanisms behind yeast adaptation and tolerance to stress. Pdr18 is a plasma membrane ABC transporter of the pleiotropic drug resistance family and a reported determinant of acetic acid tolerance mediating ergosterol transport. This study provides evidence for the impact of Pdr18 expression in yeast cell wall during adaptation to acetic acid stress. The time-course of acetic-acid-induced transcriptional activation of cell wall biosynthetic genes (FKS1, BGL2, CHS3, GAS1) and of increased cell wall stiffness and cell wall polysaccharide content in cells with the PDR18 deleted, compared to parental cells, is reported. Despite the robust and more intense adaptive response of the pdr18Δ population, the stress-induced increase of cell wall resistance to lyticase activity was below parental strain levels, and the duration of the period required for intracellular pH recovery from acidification and growth resumption was higher in the less tolerant pdr18Δ population. The ergosterol content, critical for plasma membrane stabilization, suffered a drastic reduction in the first hour of cultivation under acetic acid stress, especially in pdr18Δ cells. Results revealed a crosstalk between plasma membrane ergosterol content and cell wall biophysical properties, suggesting a coordinated response to counteract the deleterious effects of acetic acid.
Collapse
|
7
|
van Dijk M, Rugbjerg P, Nygård Y, Olsson L. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:201. [PMID: 34654441 PMCID: PMC8518171 DOI: 10.1186/s13068-021-02049-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. RESULTS We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. CONCLUSIONS These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.
Collapse
Affiliation(s)
- Marlous van Dijk
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
8
|
Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol 2021; 9:642375. [PMID: 34249904 PMCID: PMC8264433 DOI: 10.3389/fcell.2021.642375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
Acetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry. Due to its obvious interest to industrial processes, research on the mechanisms underlying the impact of acetic acid in yeast cells has been increasing. In the past twenty years, a plethora of studies have addressed the intricate cascade of molecular events involved in cell death induced by acetic acid, which is now considered a model in the yeast regulated cell death field. As such, understanding how acetic acid modulates cellular functions brought about important knowledge on modulable targets not only in biotechnology but also in biomedicine. Here, we performed a comprehensive literature review to compile information from published studies performed with lethal concentrations of acetic acid, which shed light on regulated cell death mechanisms. We present an historical retrospective of research on this topic, first providing an overview of the cell death process induced by acetic acid, including functional and structural alterations, followed by an in-depth description of its pharmacological and genetic regulation. As the mechanistic understanding of regulated cell death is crucial both to design improved biomedical strategies and to develop more robust and resilient yeast strains for industrial applications, acetic acid-induced cell death remains a fruitful and open field of study.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - António Rego
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Vítor M Martins
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
9
|
Ribeiro RA, Vitorino MV, Godinho CP, Bourbon-Melo N, Robalo TT, Fernandes F, Rodrigues MS, Sá-Correia I. Yeast adaptive response to acetic acid stress involves structural alterations and increased stiffness of the cell wall. Sci Rep 2021; 11:12652. [PMID: 34135398 PMCID: PMC8209030 DOI: 10.1038/s41598-021-92069-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
This work describes a coordinate and comprehensive view on the time course of the alterations occurring at the level of the cell wall during adaptation of a yeast cell population to sudden exposure to a sub-lethal stress induced by acetic acid. Acetic acid is a major inhibitory compound in industrial bioprocesses and a widely used preservative in foods and beverages. Results indicate that yeast cell wall resistance to lyticase activity increases during acetic acid-induced growth latency, corresponding to yeast population adaptation to sudden exposure to this stress. This response correlates with: (i) increased cell stiffness, assessed by atomic force microscopy (AFM); (ii) increased content of cell wall β-glucans, assessed by fluorescence microscopy, and (iii) slight increase of the transcription level of the GAS1 gene encoding a β-1,3-glucanosyltransferase that leads to elongation of (1→3)-β-D-glucan chains. Collectively, results reinforce the notion that the adaptive yeast response to acetic acid stress involves a coordinate alteration of the cell wall at the biophysical and molecular levels. These alterations guarantee a robust adaptive response essential to limit the futile cycle associated to the re-entry of the toxic acid form after the active expulsion of acetate from the cell interior.
Collapse
Affiliation(s)
- Ricardo A Ribeiro
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Miguel V Vitorino
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departament of Physics, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Cláudia P Godinho
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Tiago T Robalo
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departament of Physics, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Mário S Rodrigues
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departament of Physics, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
10
|
Pateraki C, Skliros D, Flemetakis E, Koutinas A. Succinic acid production from pulp and paper industry waste: A transcriptomic approach. J Biotechnol 2020; 325:250-260. [PMID: 33069778 DOI: 10.1016/j.jbiotec.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
The fermentative production of biobased chemicals and polymers using crude lignocellulose hydrolysates is challenging due to the presence of various inhibitory compounds and multiple sugars. This study evaluates the metabolic response of Actinobacillus succinogenes for the production of succinic acid using spent sulphite liquor (SSL) as feedstock derived from industrial acidic sulphite pulping of Eucalyptus globulus hardwood. A transcriptomic approach led to significant insights on gene regulation of the major metabolic pathways (glycolysis, pentose phosphate pathway, TCA cycle, pyruvate metabolism and oxidative phosphorylation) in batch cultures carried out on SSL and compared with glucose and xylose. Significantly overexpressed genes in SSL compared to glucose and xylose were fructose biphosphate aldolase (> 1.18-fold change) in the catabolism, phosphoenolpyruvate carboxykinase (> 1.59-fold change) and malate dehydrogenase (> 1.49-fold change) in the TCA cycle, citrate lyase (> 1.7-fold change), dihydrolipoamide dehydrogenase (> 0.88-fold change), pyruvate dehydrogenase E2 (> 1.63-fold change) and pyruvate formate lyase (> 0.61-fold change), involved in acetyl-CoA pathways. Finally, C4 tricarboxylic transporters were overexpressed (DCU (> 1.61-fold change) and 0079 (> 4.19-fold change). SSL was responsible for the upregulation of genes involved in the TCA cycle and oxidative phosphorylation, while xylose showed similar results with SSL in the oxidative phosphorylation.
Collapse
Affiliation(s)
- Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
11
|
Chen H, Li J, Wan C, Fang Q, Bai F, Zhao X. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C. FEMS Yeast Res 2020; 19:5543220. [PMID: 31374572 DOI: 10.1093/femsyr/foz055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Budding yeast Saccharomyces cerevisiae is widely used for lignocellulosic biorefinery. However, its fermentation efficiency is challenged by various inhibitors (e.g. weak acids, furfural) in the lignocellulosic hydrolysate, and acetic acid is commonly present as a major inhibitor. The effects of oxidoreductases on the inhibitor tolerance of S. cerevisiae have mainly focused on furfural and vanillin, whereas the influence of quinone oxidoreductase on acetic acid tolerance is still unknown. In this study, we show that overexpression of a quinone oxidoreductase-encoding gene, YCR102C, in S. cerevisiae, significantly enhanced ethanol production under acetic acid stress as well as in the inhibitor mixture, and also improved resistance to simultaneous stress of 40°C and 3.6 g/L acetic acid. Increased catalase activities, NADH/NAD+ ratio and contents of several metals, especially potassium, were observed by YCR102C overexpression under acetic acid stress. To our knowledge, this is the first report that the quinone oxidoreductase family protein is related to acid stress tolerance. Our study provides a novel strategy to increase lignocellulosic biorefinery efficiency using yeast cell factory.
Collapse
Affiliation(s)
- Hongqi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Wan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Fang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Fletcher E, Gao K, Mercurio K, Ali M, Baetz K. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 2018; 52:98-109. [PMID: 30471359 DOI: 10.1016/j.ymben.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Abstract
The conversion of plant material into biofuels and high value products is a two-step process of hydrolysing plant lignocellulose and next fermenting the sugars produced. However, lignocellulosic hydrolysis not only frees sugars for fermentation it simultaneously generates toxic chemicals, including phenolic compounds which severely inhibit yeast fermentation. To understand the molecular basis of phenolic compound toxicity, we performed genome-wide chemogenomic screens in Saccharomyces cerevisiae to identify deletion mutants that were either hypersensitive or resistant to three common phenolic compounds found in plant hydrolysates: coniferyl aldehyde, ferulic acid and 4-hydroxybenzoic acid. Despite being similar in structure, our screen revealed that yeast utilizes distinct pathways to tolerate phenolic compound exposure. Furthermore, although each phenolic compound induced reactive oxygen species (ROS), ferulic acid and 4-hydroxybenzoic acid-induced a general cytoplasmic ROS distribution while coniferyl aldehyde-induced ROS partially localized to the mitochondria and to a lesser extent, the endoplasmic reticulum. We found that the glucose-6-phosphate dehydrogenase enzyme Zwf1, which catalyzes the rate limiting step of pentose phosphate pathway, is required for reducing the accummulation of coniferyl aldehyde-induced ROS, potentially through the sequestering of Zwf1 to sites of ROS accumulation. Our novel insights into biological impact of three common phenolic inhibitors will inform the engineering of yeast strains with improved efficiency of biofuel and biochemical production in the presence hydrolysate-derived phenolic compounds.
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kai Gao
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Mariam Ali
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
13
|
Fernández-Niño M, Pulido S, Stefanoska D, Pérez C, González-Ramos D, van Maris AJA, Marchal K, Nevoigt E, Swinnen S. Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing. FEMS Yeast Res 2018; 18:5097782. [DOI: 10.1093/femsyr/foy100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/11/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miguel Fernández-Niño
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
- Department of Chemical Engineering, Universidad de los Andes, Cra 1 N° 18A - 12, 111711 Bogotá, Colombia
| | - Sergio Pulido
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Despina Stefanoska
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Camilo Pérez
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Daniel González-Ramos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
14
|
Palma M, Guerreiro JF, Sá-Correia I. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective. Front Microbiol 2018. [PMID: 29515554 PMCID: PMC5826360 DOI: 10.3389/fmicb.2018.00274] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii. However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Geng P, Zhang L, Shi GY. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017; 33:94. [PMID: 28405910 DOI: 10.1007/s11274-017-2259-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
Abstract
Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.
Collapse
Affiliation(s)
- Peng Geng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Gui Yang Shi
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
16
|
Dong Y, Hu J, Fan L, Chen Q. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Sci Rep 2017; 7:42659. [PMID: 28209995 PMCID: PMC5314350 DOI: 10.1038/srep42659] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
As a typical harmful inhibitor in cellulosic hydrolyzates, acetic acid not only hinders bioethanol production, but also induces cell death in Saccharomyces cerevisiae. Herein, we conducted both transcriptomic and metabolomic analyses to investigate the global responses under acetic acid stress at different stages. There were 295 up-regulated and 427 down-regulated genes identified at more than two time points during acetic acid treatment (150 mM, pH 3.0). These differentially expressed genes (DEGs) were mainly involved in intracellular homeostasis, central metabolic pathway, transcription regulation, protein folding and stabilization, ubiquitin-dependent protein catabolic process, vesicle-mediated transport, protein synthesis, MAPK signaling pathways, cell cycle, programmed cell death, etc. The interaction network of all identified DEGs was constructed to speculate the potential regulatory genes and dominant pathways in response to acetic acid. The transcriptional changes were confirmed by metabolic profiles and phenotypic analysis. Acetic acid resulted in severe acidification in both cytosol and mitochondria, which was different from the effect of extracellular pH. Additionally, the imbalance of intracellular acetylation was shown to aggravate cell death under this stress. Overall, this work provides a novel and comprehensive understanding of stress responses and programmed cell death induced by acetic acid in yeast.
Collapse
Affiliation(s)
- Yachen Dong
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingjin Hu
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Linlin Fan
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
17
|
Swinnen S, Henriques SF, Shrestha R, Ho PW, Sá-Correia I, Nevoigt E. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact 2017; 16:7. [PMID: 28068993 PMCID: PMC5220606 DOI: 10.1186/s12934-016-0621-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
Background Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance. Results By applying the concept of global transcription machinery engineering to the regulon-specific transcription factor Haa1, a mutant allele containing two point mutations could be selected that resulted in a significantly higher acetic acid tolerance as compared to the wild-type allele. The level of improvement obtained was comparable to the level obtained by overexpression of HAA1, which was achieved by introduction of a second copy of the native HAA1 gene. Dissection of the contribution of the two point mutations to the phenotype showed that the major improvement was caused by an amino acid exchange at position 135 (serine to phenylalanine). In order to further study the mechanisms underlying the tolerance phenotype, Haa1 translocation and transcriptional activation of Haa1 target genes was compared between Haa1 mutant, overproduction and wild-type strains. While the rapid Haa1 translocation from the cytosol to the nucleus in response to acetic acid was not affected in the Haa1S135F mutant strain, the levels of transcriptional activation of four selected Haa1-target genes by acetic acid were significantly higher in cells of the mutant strain as compared to cells of the wild-type strain. Interestingly, the time-course of transcriptional activation in response to acetic acid was comparable for the mutant and wild-type strain whereas the maximum mRNA levels obtained correlate with each strain’s tolerance level. Conclusion Our data confirms that engineering of the regulon-specific transcription factor Haa1 allows the improvement of acetic acid tolerance in S. cerevisiae. It was also shown that the beneficial S135F mutation identified in the current work did not lead to an increase of HAA1 transcript level, suggesting that an altered protein structure of the Haa1S135F mutant protein led to an increased recruitment of the transcription machinery to Haa1 target genes.
Collapse
Affiliation(s)
- Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Sílvia F Henriques
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Ranjan Shrestha
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Ping-Wei Ho
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
18
|
Unrean P. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery. Bioprocess Biosyst Eng 2016; 40:611-623. [DOI: 10.1007/s00449-016-1725-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
|
19
|
Wen X, Sidhu S, Horemans SK, Sooksawat N, Harner NK, Bajwa PK, Yuan Z, Lee H. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037. J Biosci Bioeng 2016; 121:631-637. [DOI: 10.1016/j.jbiosc.2015.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/01/2015] [Accepted: 10/20/2015] [Indexed: 11/27/2022]
|
20
|
Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:200. [PMID: 27679668 PMCID: PMC5029107 DOI: 10.1186/s13068-016-0614-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Lignocellulosic biomass continues to be investigated as a viable source for bioethanol production. However, the pretreatment process generates inhibitory compounds that impair the growth and fermentation performance of microorganisms such as Saccharomyces cerevisiae. Pinewood specifically has been shown to be challenging in obtaining industrially relevant ethanol titers. An industrial S. cerevisiae strain was subjected to directed evolution and adaptation in pretreated pine biomass and resultant strains, GHP1 and GHP4, exhibited improved growth and fermentative ability on pretreated pine in the presence of related inhibitory compounds. A comparative transcriptomic approach was applied to identify and characterize differences in phenotypic stability of evolved strains. RESULTS Evolved strains displayed different fermentative capabilities with pretreated pine that appear to be influenced by the addition or absence of 13 inhibitory compounds during pre-culturing. GHP4 performance was consistent independent of culturing conditions, while GHP1 performance was dependent on culturing with inhibitors. Comparative transcriptomics revealed 52 genes potentially associated with stress responses to multiple inhibitors simultaneously. Fluorescence microscopy revealed improved cellular integrity of both strains with mitochondria exhibiting resistance to the damaging effects of inhibitors in contrast to the parent. CONCLUSIONS Multiple potentially novel genetic targets have been discovered for understanding stress tolerance through the characterization of our evolved strains. This study specifically examines the synergistic effects of multiple inhibitors and identified targets will guide future studies in remediating effects of inhibitors and further development of robust yeast strains for multiple industrial applications.
Collapse
Affiliation(s)
| | - Gary M. Hawkins
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Steven W. Gorsich
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 USA
| | | |
Collapse
|
21
|
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:9. [PMID: 26766964 PMCID: PMC4710983 DOI: 10.1186/s13068-015-0418-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a promising source of renewable biofuels. However, pretreatment of lignocellulosic biomass generates fermentation inhibitors that adversely affect the growth of industrial microorganisms such as Saccharomyces cerevisiae and prevent economic production of lignocellulosic biofuels. A critical challenge on developing S. cerevisiae with improved inhibitor resistance lies in incomplete understanding of molecular basis for inhibitor stress response and limited information on effective genetic targets for increasing yeast resistance to mixed fermentation inhibitors. In this study, we applied comparative transcriptomic analysis to determine the molecular basis for acetic acid and/or furfural resistance in S. cerevisiae. RESULTS We recently developed a yeast strain YC1 with superior resistance to acetic acid, furfural, and their mixture through inverse metabolic engineering. In this study, we first determined transcriptional changes through RNA sequencing in YC1 versus the wild-type strain S-C1 under three different inhibitor conditions, including acetic acid alone, furfural alone, and mixture of acetic acid and furfural. The genes associated with stress responses of S. cerevisiae to single and mixed inhibitors were revealed. Specifically, we identified 184 consensus genes that were differentially regulated in response to the distinct inhibitor resistance between YC1 and S-C1. Bioinformatic analysis next revealed key transcription factors (TFs) that regulate these consensus genes. The top TFs identified, Sfp1p and Ace2p, were experimentally tested as overexpression targets for strain optimization. Overexpression of the SFP1 gene improved specific ethanol productivity by nearly four times, while overexpression of the ACE2 gene enhanced the rate by three times in the presence of acetic acid and furfural. Overexpression of SFP1 gene in the resistant strain YC1 further resulted in 42 % increase in ethanol productivity in the presence of acetic acid and furfural, suggesting the effect of Sfp1p in optimizing the yeast strain for improved tolerance to mixed fermentation inhibitor. CONCLUSIONS Transcriptional regulation underlying yeast resistance to acetic acid and furfural was determined. Two transcription factors, Sfp1p and Ace2p, were uncovered for the first time for their functions in improving yeast resistance to mixed fermentation inhibitors. The study demonstrated an omics-guided metabolic engineering framework, which could be developed as a promising strategy to improve complex microbial phenotypes.
Collapse
Affiliation(s)
- Yingying Chen
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| | - Jiayuan Sheng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Tao Jiang
- />Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Joseph Stevens
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Xueyang Feng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Na Wei
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
22
|
Cunha JT, Aguiar TQ, Romaní A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. BIORESOURCE TECHNOLOGY 2015; 191:7-16. [PMID: 25974617 DOI: 10.1016/j.biortech.2015.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 05/13/2023]
Abstract
PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes.
Collapse
Affiliation(s)
- Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Carla Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Determinants of tolerance to inhibitors in hardwood spent sulfite liquor in genome shuffled Pachysolen tannophilus strains. Antonie van Leeuwenhoek 2015; 108:811-34. [PMID: 26231071 DOI: 10.1007/s10482-015-0537-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
Genome shuffling was used to obtain Pachysolen tannophilus mutants with improved tolerance to inhibitors in hardwood spent sulfite liquor (HW SSL). Genome shuffled strains (GHW301, GHW302 and GHW303) grew at higher concentrations of HW SSL (80 % v/v) compared to the HW SSL UV mutant (70 % v/v) and the wild-type (WT) strain (50 % v/v). In defined media containing acetic acid (0.70-0.90 % w/v), GHW301, GHW302 and GHW303 exhibited a shorter lag compared to the acetic acid UV mutant, while the WT did not grow. Genome shuffled strains produced more ethanol than the WT at higher concentrations of HW SSL and an aspen hydrolysate. To identify the genetic basis of inhibitor tolerance, whole genome sequencing was carried out on GHW301, GHW302 and GHW303 and compared to the WT strain. Sixty single nucleotide variations were identified that were common to all three genome shuffled strains. Of these, 40 were in gene sequences and 20 were within 5 bp-1 kb either up or downstream of protein encoding genes. Based on the mutated gene products, mutations were grouped into functional categories and affected a variety of cellular functions, demonstrating the complexity of inhibitor tolerance in yeast. Sequence analysis of UV mutants (UAA302 and UHW303) from which GHW301, GHW302 and GHW303 were derived, confirmed the success of our cross-mating based genome shuffling strategy. Whole-genome sequencing analysis allowed identification of potential gene targets for tolerance to inhibitors in lignocellulosic hydrolysates.
Collapse
|
24
|
Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biotechnol 2015; 99:6391-403. [DOI: 10.1007/s00253-015-6706-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
25
|
Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microb Cell Fact 2015; 14:61. [PMID: 25928878 PMCID: PMC4417197 DOI: 10.1186/s12934-015-0242-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 01/24/2023] Open
Abstract
Background Lignocellulosic biomass is a viable source of renewable energy for bioethanol production. For the efficient conversion of biomass into bioethanol, it is essential that sugars from both the cellulose and hemicellulose fractions of lignocellulose be utilised. Results We describe the development of a recombinant yeast system for the fermentation of cellulose and xylose, the most abundant pentose sugar in the hemicellulose fraction of biomass. The brewer’s yeast Saccharomyces pastorianus was chosen as a host as significantly higher recombinant enzyme activities are achieved, when compared to the more commonly used S. cerevisiae. When expressed in S. pastorianus, the Trichoderma reesei xylose oxidoreductase pathway was more efficient at alcohol production from xylose than the xylose isomerase pathway. The alcohol yield was influenced by the concentration of xylose in the medium and was significantly improved by the additional expression of a gene encoding for xylulose kinase. The xylose reductase, xylitol dehydrogenase and xylulose kinase genes were co-expressed with genes encoding for the three classes of T. reesei cellulases, namely endoglucanase (EG2), cellobiohydrolysase (CBH2) and β-glucosidase (BGL1). The initial metabolism of xylose by the engineered strains facilitated production of cellulases at fermentation temperatures. The sequential metabolism of xylose and cellulose generated an alcohol yield of 82% from the available sugars. Several different types of biomass, such as the energy crop Miscanthus sinensis and the industrial waste, brewer’s spent grains, were examined as biomass sources for fermentation using the developed yeast strains. Xylose metabolism and cell growth were inhibited in fermentations carried out with acid-treated spent grain liquor, resulting in a 30% reduction in alcohol yield compared to fermentations carried out with mixed sugar substrates. Conclusions Reconstitution of complete enzymatic pathways for cellulose hydrolysis and xylose utilisation in S. pastorianus facilitates the co-fermentation of cellulose and xylose without the need for added exogenous cellulases and provides a basis for the development of a consolidated process for co-utilisation of hemicellulose and cellulose sugars. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0242-4) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y. Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:63. [PMID: 25897324 PMCID: PMC4403834 DOI: 10.1186/s13068-015-0244-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Current large-scale pretreatment processes for lignocellulosic biomass are generally accompanied by the formation of toxic degradation products, such as 5-hydroxymethylfurfural (HMF), which inhibit cellulolytic enzymes and fermentation by ethanol-producing yeast. Overcoming these toxic effects is a key technical barrier in the biochemical conversion of plant biomass to biofuels. Pleurotus ostreatus, a white-rot fungus, can efficiently degrade lignocellulose. In this study, we analyzed the ability of P. ostreatus to tolerate and metabolize HMF and investigated relevant molecular pathways associated with these processes. RESULTS P. ostreatus was capable to metabolize and detoxify HMF 30 mM within 48 h, converting it into 2,5-bis-hydroxymethylfuran (HMF alcohol) and 2,5-furandicarboxylic acid (FDCA), which subsequently allowed the normal yeast growth in amended media. We show that two enzymes groups, which belong to the ligninolytic system, aryl-alcohol oxidases and a dehydrogenase, are involved in this process. HMF induced the transcription and production of these enzymes and was accompanied by an increase in activity levels. We also demonstrate that following the induction of these enzymes, HMF could be metabolized in vitro. CONCLUSIONS Aryl-alcohol oxidase and dehydrogenase gene family members are part of the transcriptional and subsequent translational response to HMF exposure in P. ostreatus and are involved in HMF transformation. Based on our data, we propose that these enzymatic capacities of P. ostreatus either be integrated in biomass pretreatment or the genes encoding these enzymes may function to detoxify HMF via heterologous expression in fermentation organisms, such as Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Daria Feldman
- />Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 76100 Israel
| | - David J Kowbel
- />Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, California 94720 USA
| | - N Louise Glass
- />Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, California 94720 USA
| | - Oded Yarden
- />Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 76100 Israel
| | - Yitzhak Hadar
- />Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 76100 Israel
| |
Collapse
|
27
|
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.
Collapse
|
28
|
Wang X, Gao Q, Bao J. Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:136. [PMID: 26346604 PMCID: PMC4559888 DOI: 10.1186/s13068-015-0323-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/25/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the two major inhibitor compounds generated from lignocellulose pretreatment, especially for dilute acid, steam explosion, neutral hot water pretreatment methods. The two inhibitors severely inhibit the cell growth and metabolism of fermenting strains in the consequent bioconversion step. The biodetoxification strain Amorphotheca resinae ZN1 has demonstrated its extraordinary capacity of fast and complete degradation of furfural and HMF into corresponding alcohol and acid forms. The elucidation of degradation metabolism of A. resinae ZN1 at molecular level will facilitate the detoxification of the pretreated lignocellulose biomass and provide the metabolic pathway information for more powerful biodetoxification strain development. RESULTS Amorphotheca resinae ZN1 was able to use furfural or HMF as the sole carbon source for cell growth. During the detoxification process, A. resinae ZN1 firstly reduced furfural or HMF into furfuryl alcohol or HMF alcohol, and then oxidized into furoic acid or HMF acid through furan aldehyde as the intermediate at low concentration level. The cell mass measurement suggested that furfural was more toxic to A. resinae ZN1 than HMF. In order to identify the degradation mechanism of A. resinae ZN1, transcription levels of 137 putative genes involved in the degradation of furfural and HMF in A. resinae ZN1 were investigated using the real-time quantitative PCR (qRT-PCR) method under the stress of furfural and HMF, as well as the stress of their secondary metabolites, furfuryl alcohol and HMF alcohol. Two Zn-dependent alcohol dehydrogenase genes and five AKR/ARI genes were found to be responsible for the furfural and HMF conversion to their corresponding alcohols. For the conversion of the two furan alcohols to the corresponding acids, three propanol-preferring alcohol dehydrogenase genes, one NAD(P)(+)-depending aldehyde dehydrogenase gene, or two oxidase genes with free oxygen as the substrate were identified under aerobic condition. CONCLUSIONS The genes responsible for the furfural and HMF degradation to the corresponding alcohols and acids in A. resinae ZN1 were identified based on the analysis of the genome annotation, the gene transcription data and the inhibitor conversion results. These genetic resources provided the important information for understanding the mechanism of furfural and HMF degradation and modification of high tolerant strains used for biorefinery processing.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
29
|
Pereira FB, Teixeira MC, Mira NP, Sá-Correia I, Domingues L. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates. ACTA ACUST UNITED AC 2014; 41:1753-61. [DOI: 10.1007/s10295-014-1519-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
Abstract
Abstract
The presence of toxic compounds derived from biomass pre-treatment in fermentation media represents an important drawback in second-generation bio-ethanol production technology and overcoming this inhibitory effect is one of the fundamental challenges to its industrial production. The aim of this study was to systematically identify, in industrial medium and at a genomic scale, the Saccharomyces cerevisiae genes required for simultaneous and maximal tolerance to key inhibitors of lignocellulosic fermentations. Based on the screening of EUROSCARF haploid mutant collection, 242 and 216 determinants of tolerance to inhibitory compounds present in industrial wheat straw hydrolysate (WSH) and in inhibitor-supplemented synthetic hydrolysate were identified, respectively. Genes associated to vitamin metabolism, mitochondrial and peroxisomal functions, ribosome biogenesis and microtubule biogenesis and dynamics are among the newly found determinants of WSH resistance. Moreover, PRS3, VMA8, ERG2, RAV1 and RPB4 were confirmed as key genes on yeast tolerance and fermentation of industrial WSH.
Collapse
Affiliation(s)
- Francisco B Pereira
- grid.10328.38 000000012159175X CEB-Centre of Biological Engineering Universidade do Minho Campus de Gualtar 4710-057 Braga Portugal
| | - Miguel C Teixeira
- grid.9983.b 0000000121814263 Department of Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, IBB-Institute for Biotechnology and Bioengineering Universidade de Lisboa Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Nuno P Mira
- grid.9983.b 0000000121814263 Department of Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, IBB-Institute for Biotechnology and Bioengineering Universidade de Lisboa Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Isabel Sá-Correia
- grid.9983.b 0000000121814263 Department of Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, IBB-Institute for Biotechnology and Bioengineering Universidade de Lisboa Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Lucília Domingues
- grid.10328.38 000000012159175X CEB-Centre of Biological Engineering Universidade do Minho Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
30
|
Wang W, Yang S, Hunsinger GB, Pienkos PT, Johnson DK. Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator. Front Microbiol 2014; 5:247. [PMID: 24904560 PMCID: PMC4034039 DOI: 10.3389/fmicb.2014.00247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/06/2014] [Indexed: 12/25/2022] Open
Abstract
To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.
Collapse
Affiliation(s)
- Wei Wang
- National Renewable Energy Laboratory, Biosciences CenterGolden, CO, USA
| | - Shihui Yang
- National Renewable Energy Laboratory, National Bioenergy CenterGolden, CO, USA
| | | | - Philip T. Pienkos
- National Renewable Energy Laboratory, National Bioenergy CenterGolden, CO, USA
| | - David K. Johnson
- National Renewable Energy Laboratory, Biosciences CenterGolden, CO, USA
| |
Collapse
|
31
|
Zheng DQ, Chen J, Zhang K, Gao KH, Li O, Wang PM, Zhang XY, Du FG, Sun PY, Qu AM, Wu S, Wu XC. Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast. Appl Microbiol Biotechnol 2013; 98:3059-70. [PMID: 24346281 DOI: 10.1007/s00253-013-5423-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
Whole-genome shuffling (WGS) is a powerful technology of improving the complex traits of many microorganisms. However, the molecular mechanisms underlying the altered phenotypes in isolates were less clarified. Isolates with significantly enhanced stress tolerance and ethanol titer under very-high-gravity conditions were obtained after WGS of the bioethanol Saccharomyces cerevisiae strain ZTW1. Karyotype analysis and RT-qPCR showed that chromosomal rearrangement occurred frequently in genome shuffling. Thus, the phenotypic effects of genomic structural variations were determined in this study. RNA-Seq and physiological analyses revealed the diverse transcription pattern and physiological status of the isolate S3-110 and ZTW1. Our observations suggest that the improved stress tolerance of S3-110 can be largely attributed to the copy number variations in large DNA regions, which would adjust the ploidy of yeast cells and expression levels of certain genes involved in stress response. Overall, this work not only constructed shuffled S. cerevisiae strains that have potential industrial applications but also provided novel insights into the molecular mechanisms of WGS and enhanced our knowledge on this useful breeding strategy.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zeng Y, Zhao S, Yang S, Ding SY. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 2013; 27:38-45. [PMID: 24863895 DOI: 10.1016/j.copbio.2013.09.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed.
Collapse
Affiliation(s)
- Yining Zeng
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Shuai Zhao
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|