1
|
Identification of the bacteria associated to the phycosphere of the Chlorella-like strain SEC_LI_ChL_1. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Lian J, Steinert G, de Vree J, Meijer S, Heryanto C, Bosma R, Wijffels RH, Barbosa MJ, Smidt H, Sipkema D. Bacterial diversity in different outdoor pilot plant photobioreactor types during production of the microalga Nannochloropsis sp. CCAP211/78. Appl Microbiol Biotechnol 2022; 106:2235-2248. [PMID: 35166894 PMCID: PMC8930801 DOI: 10.1007/s00253-022-11815-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
As large-scale outdoor production cannot be done in complete containment, cultures are (more) open for bacteria, which may affect the productivity and stability of the algae production process. We investigated the bacterial diversity in two indoor reactors and four pilot-scale outdoor reactors for the production of Nannochloropsis sp. CCAP211/78 spanning four months of operation from July to October. Illumina sequencing of 16S rRNA gene amplicons demonstrated that a wide variety of bacteria were present in all reactor types, with predominance of Bacteroidetes and Alphaproteobacteria. Bacterial communities were significantly different between all reactor types (except between the horizontal tubular reactor and the vertical tubular reactor) and also between runs in each reactor. Bacteria common to the majority of samples included one member of the Saprospiraceae family and one of the NS11-12_marine group (both Bacteroidetes). Hierarchical clustering analysis revealed two phases during the cultivation period separated by a major shift in bacterial community composition in the horizontal tubular reactor, the vertical tubular reactor and the raceway pond with a strong decrease of the Saprospiraceae and NS11-12_marine group that initially dominated the bacterial communities. Furthermore, we observed a less consistent pattern of bacterial taxa appearing in different reactors and runs, most of which belonging to the classes Deltaproteobacteria and Flavobacteriia. In addition, canonical correspondence analysis showed that the bacterial community composition was significantly correlated with the nitrate concentration. This study contributes to our understanding of bacterial diversity and composition in different types of outdoor reactors exposed to a range of dynamic biotic and abiotic factors. Key points • Reactor types had significantly different bacterial communities except HT and VT • The inoculum source and physiochemical factors together affect bacterial community • The bacterial family Saprospiraceae is positively correlated to microalgal growth.
Collapse
Affiliation(s)
- Jie Lian
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jeroen de Vree
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Sven Meijer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Christa Heryanto
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rouke Bosma
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, N8049, Bodø, Norway
| | - Maria J Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Lian J, Wijffels RH, Smidt H, Sipkema D. The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol 2018; 11:806-818. [PMID: 29978601 PMCID: PMC6116740 DOI: 10.1111/1751-7915.13296] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Microbes are ubiquitously distributed, and they are also present in algae production systems. The algal microbiome is a pivotal part of the alga holobiont and has a key role in modulating algal populations in nature. However, there is a lack of knowledge on the role of bacteria in artificial systems ranging from laboratory flasks to industrial ponds. Coexisting microorganisms, and predominantly bacteria, are often regarded as contaminants in algal research, but recent studies manifested that many algal symbionts not only promote algal growth but also offer advantages in downstream processing. Because of the high expectations for microalgae in a bio‐based economy, better understanding of benefits and risks of algal–microbial associations is important for the algae industry. Reducing production cost may be through applying specific bacteria to enhance algae growth at large scale as well as through preventing the growth of a broad spectrum of algal pathogens. In this review, we highlight the latest studies of algae–microbial interactions and their underlying mechanisms, discuss advantages of large‐scale algal–bacterial cocultivation and extend such knowledge to a broad range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Lian
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering Group, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
4
|
Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. BIORESOURCE TECHNOLOGY 2015; 175:578-85. [PMID: 25459870 DOI: 10.1016/j.biortech.2014.10.159] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 05/16/2023]
Abstract
This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.
Collapse
Affiliation(s)
- Dae-Hyun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea
| | - Jina Heo
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea; Major of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305 350, Republic of Korea
| | - Jimin Lee
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea
| | - Byung-Hyuk Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea
| | - Hee-Mock Oh
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea; Major of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305 350, Republic of Korea
| | - Hee-Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305 806, Republic of Korea; Major of Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), Daejeon 305 350, Republic of Korea.
| |
Collapse
|