1
|
Ouchene R, Zaatout N, Suzuki MT. An Overview on Nocardiopsis Species Originating From North African Biotopes as a Promising Source of Bioactive Compounds and In Silico Genome Mining Analysis of Three Sequenced Genomes. J Basic Microbiol 2024; 64:e2400046. [PMID: 38934516 DOI: 10.1002/jobm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Actinobacteria are renowned for their prolific production of diverse bioactive secondary metabolites. In recent years, there has been an increasing focus on exploring "rare" genera within this phylum for biodiscovery purposes, notably the Nocardiopsis genus, which will be the subject of the present study. Recognizing the absence of articles describing the research process of finding bioactive molecules from the genus Nocardiopsis in North African environments. We, therefore, present a historical overview of the discoveries of bioactive molecules of the genus Nocardiopsis originating from the region, highlighting their biological activities and associated reported molecules, providing a snapshot of the current state of the field, and offering insights into future opportunities and challenges for drug discovery. Additionally, we present a genome mining analysis of three genomes deposited in public databases that have been reported to be bioactive. A total of 36 biosynthetic gene clusters (BGCs) were identified, including those known to encode bioactive molecules. Notably, a substantial portion of the BGCs showed little to no similarity to those previously described, suggesting the possibility that the analyzed strains could be potential producers of new compounds. Further research on these genomes is essential to fully uncovering their biotechnological potential. Moving forward, we discuss the experimental designs adopted in the reported studies, as well as new avenues to guide the exploration of the Nocardiopsis genus in North Africa.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| | - Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna, Batna, Algeria
| | - Marcelino T Suzuki
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Wakinaka T, Matsutani M, Watanabe J, Mogi Y, Tokuoka M, Ohnishi A. Ribitol-Containing Wall Teichoic Acid of Tetragenococcus halophilus Is Targeted by Bacteriophage phiWJ7 as a Binding Receptor. Microbiol Spectr 2022; 10:e0033622. [PMID: 35311554 PMCID: PMC9045211 DOI: 10.1128/spectrum.00336-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Tetragenococcus halophilus, a halophilic lactic acid bacterium, is used in the fermentation process of soy sauce manufacturing. For many years, bacteriophage infections of T. halophilus have been a major industrial problem that causes fermentation failure. However, studies focusing on the mechanisms of tetragenococcal host-phage interactions are not sufficient. In this study, we generated two phage-insensitive derivatives from the parental strain T. halophilus WJ7, which is susceptible to the virulent phage phiWJ7. Whole-genome sequencing of the derivatives revealed that insertion sequences were transposed into a gene encoding poly(ribitol phosphate) polymerase (TarL) in both derivatives. TarL is responsible for the biosynthesis of ribitol-containing wall teichoic acid, and WJ7 was confirmed to contain ribitol in extracted wall teichoic acid, but the derivative was not. Cell walls of WJ7 irreversibly adsorbed phiWJ7, but those of the phage-insensitive derivatives did not. Additionally, 25 phiWJ7-insensitive derivatives were obtained, and they showed mutations not only in tarL but also in tarI and tarJ, which are responsible for the synthesis of CDP-ribitol. These results indicate that phiWJ7 targets the ribitol-containing wall teichoic acid of host cells as a binding receptor. IMPORTANCE Information about the mechanisms of host-phage interactions is required for the development of efficient strategies against bacteriophage infections. Here, we identified the ribitol-containing wall teichoic acid as a host receptor indispensable for bacteriophage infection. The complete genome sequence of tetragenococcal phage phiWJ7 belonging to the family Rountreeviridae is also provided here. This study could become the foundation for a better understanding of host-phage interactions of tetragenococci.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Masafumi Tokuoka
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
3
|
Kim D, Shashkov AS, Dmitrenok AS, Potekhina NV, Senchenkova SN, Dorofeeva LV, Evtushenko LI, Tul'skaya EM. Novel galactofuranan and pyruvylated galactomannan in the cell wall of Clavibacter michiganensis subsp. michiganensis VKM Ac-1403 T. Carbohydr Res 2021; 500:108247. [PMID: 33524890 DOI: 10.1016/j.carres.2021.108247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022]
Abstract
The cell wall of Clavibacter michiganensis subsp. michiganensis VKM Ас-1403Т (family Microbacteriaceae, class Actinobacteria) contains two polysaccharides. The first one is neutral (1 → 6) linked galactofuranan in which every second galactofuranose residue in the main chain substituted at position 3 by side trisaccharide, β-D-GlcpNAc-(1 → 3)-α-L-Rhap-(1 → 2)-α-D-Fucp-(1 →. The second polymer is pyruvylated galactomannan with the repeating unit, →3)-α-D-Galp-(1 → 3)-α-D-[4,6-S-Pyr]-Manp-(1 → 3)-α-D-Manp-(1 →. The cell wall glycopolymer structures were established by chemical and NMR spectroscopic methods. The obtained results provide new data on the cell wall composition of plant pathogenic species of the genus Clavibacter and can promote understanding the molecular mechanisms involved in colonization and infection of plants.
Collapse
Affiliation(s)
- Deborah Kim
- School of Biology,M. V. Lomonosov Moscow State University, Moscow, 119991,Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry,Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991,Russian Federation
| | - Andrey S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry,Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991,Russian Federation
| | - Nataliya V Potekhina
- School of Biology,M. V. Lomonosov Moscow State University, Moscow, 119991,Russian Federation
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry,Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991,Russian Federation
| | - Lubov V Dorofeeva
- All-Russian Collection of Microorganisms (VKM),G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms,Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290,Russian Federation
| | - Lyudmila I Evtushenko
- All-Russian Collection of Microorganisms (VKM),G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms,Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290,Russian Federation
| | - Elena M Tul'skaya
- School of Biology,M. V. Lomonosov Moscow State University, Moscow, 119991,Russian Federation.
| |
Collapse
|
4
|
Hager FF, Sützl L, Stefanović C, Blaukopf M, Schäffer C. Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci 2019; 20:E4929. [PMID: 31590345 PMCID: PMC6801904 DOI: 10.3390/ijms20194929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.
Collapse
Affiliation(s)
- Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Leander Sützl
- Department of Food Science and Technology, Food Biotechnology Laboratory, Muthgasse 11, Universität für Bodenkultur Wien, A-1190 Vienna, Austria.
| | - Cordula Stefanović
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Markus Blaukopf
- Department of Chemistry, Division of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
5
|
Pyruvylated cell wall glycopolymers of Promicromonospora citrea VKM A≿-665T and Promicromonospora sp. VKM A≿-1028. Carbohydr Res 2017; 449:134-142. [DOI: 10.1016/j.carres.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
|
6
|
Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res 2015; 174:33-47. [PMID: 25946327 DOI: 10.1016/j.micres.2015.03.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022]
Abstract
Members of the genus Nocardiopsis are ecologically versatile and biotechnologically important. They produce a variety of bioactive compounds such as antimicrobial agents, anticancer substances, tumor inducers, toxins and immunomodulators. They also secrete novel extracellular enzymes such as amylases, chitinases, cellulases, β-glucanases, inulinases, xylanases and proteases. Nocardiopsis species are aerobic, Gram-positive, non-acid-fast, catalase-positive actinomycetes with nocardioform substrate mycelia and their aerial mycelia bear long chains of spores. Their DNA possesses high contents of guanine and cytosine. There is a marked variation in properties of the isolates obtained from different ecological niches and their products. An important feature of several species is their halophilic or halotolerant nature. They are associated with a variety of marine and terrestrial biological forms wherein they produce antibiotics and toxins that help their hosts in evading pathogens and predators. Two Nocardiopsis species, namely, N. dassonvillei and N. synnemataformans (among the thirty nine reported ones) are opportunistic human pathogens and cause mycetoma, suppurative infections and abscesses. Nocardiopsis species are present in some plants (as endophytes or surface microflora) and their rhizospheres. Here, they are reported to produce enzymes such as α-amylases and antifungal agents that are effective in warding-off plant pathogens. They are prevalent as free-living entities in terrestrial locales, indoor locations, marine ecosystems and hypersaline habitats on account of their salt-, alkali- and desiccation-resistant behavior. In such natural locations, Nocardiopsis species mainly help in recycling organic compounds. Survival under these diverse conditions is mediated by the production of extracellular enzymes, antibiotics, surfactants, and the accumulation of compatible solutes. The accommodative genomic features of Nocardiopsis species support their existence under the diverse conditions where they prevail.
Collapse
Affiliation(s)
- Tahsin Bennur
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Vaishali Javdekar
- Department of Biotechnology, Abasaheb Garware College, Pune 411004, India.
| |
Collapse
|