1
|
Borel N, Greub G, For The Icsp Subcommittee On The Taxonomy Of Chlamydiae. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Chlamydiae: Minutes of the closed meeting, March 20, Meeting of the Chlamydia Research Society, Omaha, NE, USA. Int J Syst Evol Microbiol 2023; 73. [PMID: 37589254 DOI: 10.1099/ijsem.0.006004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Affiliation(s)
- Nicole Borel
- Institute of Veterinary Pathology, Department of Pathobiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Swaziland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Swaziland
| | | |
Collapse
|
2
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
3
|
Wang R, Sun R, Zhang Z, Vannini C, Di Giuseppe G, Liang A. "Candidatus Euplotechlamydia quinta," a novel chlamydia-like bacterium hosted by the ciliate Euplotes octocarinatus (Ciliophora, Spirotrichea). J Eukaryot Microbiol 2023; 70:e12945. [PMID: 36039907 DOI: 10.1111/jeu.12945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: "Candidatus Euplotechlamydia quinta."
Collapse
Affiliation(s)
- Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ruijuan Sun
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhiyun Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | | | | | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
5
|
Buitimea-Cantúa GV, Marsch-Martinez N, Ríos-Chavez P, Méndez-Bravo A, Molina-Torres J. Global gene expression analyses of the alkamide-producing plant Heliopsis longipes supports a polyketide synthase-mediated biosynthesis pathway. PeerJ 2020; 8:e10074. [PMID: 33033663 PMCID: PMC7521342 DOI: 10.7717/peerj.10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Alkamides are plant-specific bioactive molecules. They are low molecular weight N-substituted α-unsaturated acyl amides that display biological explicit activities in different organisms from bacteria, fungi, insects to mammals and plants. The acyl chain has been proposed to be biosynthesized from a fatty acid; however, this has not been demonstrated yet. Heliopsis longipes (Asteraceae) accumulates in root a C10 alkamide called affinin in its roots, but not in leaves. The closely related species Heliopsis annua does not produce alkamides. To elucidate the biosynthetic pathway of the alkamides acyl chain, a comparative global gene expression analysis contrasting roots and leaves of both species was performed. METHODS Transcriptomics analysis allowed to identify genes highly expressed in H. longipes roots, but not in tissues and species that do not accumulate alkamides. The first domain searched was the Ketosynthase (KS) domain. The phylogenetic analysis using sequences of the KS domain of FAS and PKS from different organisms, revealed that KS domains of the differentially expressed transcripts in H. longipes roots and the KS domain found in transcripts of Echinacea purpurea, another alkamides producer species, were grouped together with a high bootstrap value of 100%, sharing great similarity. Among the annotated transcripts, we found some coding for the enzymatic domains KS, AT, ACP, DH, OR and TE, which presented higher expression in H. longipes roots than in leaves. The expression level of these genes was further evaluated by qRT-PCR. All unigenes tested showed higher expression in H. longipes roots than in any the other samples. Based on this and considering that the acyl chain of affinin presents unsaturated bonds at even C numbers, we propose a new putative biosynthesis pathway mediated by a four modules polyketide synthase (PKS). RESULTS The global gene expression analysis led to the selection of a set of candidate genes involved in the biosynthesis of the acyl chain of affinin, suggesting that it may be performed by a non-iterative, partially reductive, four module type I PKS complex (PKS alk) previously thought to be absent from the plant kingdom.
Collapse
Affiliation(s)
| | - Nayelli Marsch-Martinez
- Department of Biotecnologia y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Patricia Ríos-Chavez
- Instituto de Investigaciones Químico-Biológicas, Universidad de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT – Escuela Nacional de Estudios Superiores, Morelia, Michoacan, Mexico
| | - Jorge Molina-Torres
- Department of Biotecnologia y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Tindall BJ. Comments on minutes of the Subcommittee on the Taxonomy of Chlamydiae and the Subcommittee on the Taxonomy of Rhizobia and Agrobacteria. Int J Syst Evol Microbiol 2019; 69:2599-2601. [DOI: 10.1099/ijsem.0.003223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- B. J. Tindall
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, Inhoffenstraße 7B, Germany
| |
Collapse
|
7
|
Borel N, Greub G. International Committee on Systematics of Prokaryotes (ICSP) Subcommittee on the taxonomy of Chlamydiae. Minutes of the closed meeting, 5 July 2018, Woudschoten, Zeist, The Netherlands. Int J Syst Evol Microbiol 2019; 69:2606-2608. [PMID: 31063120 DOI: 10.1099/ijsem.0.003418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Nicole Borel
- Institute of Veterinary pathology, University of Zurich, Winterthurerstrasse 268, Zurich, Switzerland
| | | |
Collapse
|
8
|
Taylor-Brown A, Pillonel T, Greub G, Vaughan L, Nowak B, Polkinghorne A. Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genome Biol Evol 2018; 10:2587-2595. [PMID: 30202970 PMCID: PMC6171736 DOI: 10.1093/gbe/evy195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0-3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Switzerland.,Pathovet AG, Tagelswangen, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, Australia
| | - Adam Polkinghorne
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
9
|
Borel N, Bavoil P, Greub G, Horn M. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Chlamydiae. Minutes of the closed meeting, 9 April 2017, Charlotte, USA. Int J Syst Evol Microbiol 2018; 68:3369-3370. [PMID: 30192223 DOI: 10.1099/ijsem.0.003010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nicole Borel
- 1Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, Zurich 8057, Switzerland
| | - Patrik Bavoil
- 2Department of Microbial Pathogenesis, University of Maryland Baltimore, USA
| | - Gilbert Greub
- 3Institute of Microbiology University of Lausanne, Switzerland
| | - Matthias Horn
- 4Department of Microbiology and Ecosystem Science Division of Microbial Ecology, University of Vienna, Austria
| |
Collapse
|
10
|
Kim H, Kwak W, Yoon SH, Kang DK, Kim H. Horizontal gene transfer of Chlamydia: Novel insights from tree reconciliation. PLoS One 2018; 13:e0195139. [PMID: 29621277 PMCID: PMC5886423 DOI: 10.1371/journal.pone.0195139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Recent comparative genomics studies have suggested that horizontal gene transfer (HGT) is one of the major processes in bacterial evolution. In this study, HGT events of 64 Chlamydia strains were investigated based on the pipeline employed in HGTree database constructed in our recent study. Tree reconciliation method was applied in order to calculate feasible HGT events. Following initial detection and an evaluation procedure, evidence of the HGT was identified in 548 gene families including 42 gene families transferred from outside of Chlamydiae phylum with high reliability. The donor species of inter-phylum HGT consists of 12 different bacterial and archaeal phyla, suggesting that Chlamydia might have even more various host range than in previous reports. In addition, each species of Chlamydia showed varying preference towards HGT, and genes engaged in HGT within Chlamydia and between other species showed different functional distribution. Also, examination of individual gene flows of niche-specific genes suggested that many of such genes are transferred mainly within Chlamydia genus. Our results uncovered novel features of HGT acting on Chlamydia genome evolution, and it would be also strong evidence that HGT is an ongoing process for intracellular pathogens. We expect that the results provide more insight into lineage- and niche-specific adaptations regarding their infectivity and pathogenicity.
Collapse
Affiliation(s)
- Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Woori Kwak
- C&K genomics, Seoul National University Research Park, Seoul, Republic of Korea
| | - Sook Hee Yoon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Pillonel T, Bertelli C, Greub G. Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages and Hallmarks of a Conserved Intracellular Lifestyle. Front Microbiol 2018. [PMID: 29515524 PMCID: PMC5826181 DOI: 10.3389/fmicb.2018.00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Chlamydiae phylum exclusively encompasses bacteria sharing a similar obligate intracellular life cycle. Existing 16S rDNA data support a high diversity within the phylum, however genomic data remain scarce owing to the difficulty in isolating strains using culture systems with eukaryotic cells. Yet, Chlamydiae genome data extracted from large scale metagenomic studies might help fill this gap. This work compares 33 cultured and 27 environmental, uncultured chlamydial genomes, in order to clarify the phylogenetic relatedness of the new chlamydial clades and to investigate the genetic diversity of the Chlamydiae phylum. The analysis of published chlamydial genomes from metagenomics bins and single cell sequencing allowed the identification of seven new deeply branching chlamydial clades sharing genetic hallmarks of parasitic Chlamydiae. Comparative genomics suggests important biological differences between those clades, including loss of many proteins involved in cell division in the genus Similichlamydia, and loss of respiratory chain and tricarboxylic acid cycle in several species. Comparative analyses of chlamydial genomes with two proteobacterial orders, the Rhizobiales and the Rickettsiales showed that genomes of different Rhizobiales families are much more similar than genomes of different Rickettsiales families. On the other hand, the chlamydial 16S rRNAs exhibit a higher sequence conservation than their Rickettsiales counterparts, while chlamydial proteins exhibit increased sequence divergence. Studying the diversity and genome plasticity of the entire Chlamydiae phylum is of major interest to better understand the emergence and evolution of this ubiquitous and ancient clade of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Trestan Pillonel
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
12
|
Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. INFECTION GENETICS AND EVOLUTION 2017; 54:108-127. [DOI: 10.1016/j.meegid.2017.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 01/02/2023]
|
13
|
Taylor-Brown A, Pillonel T, Bridle A, Qi W, Bachmann NL, Miller TL, Greub G, Nowak B, Seth-Smith HMB, Vaughan L, Polkinghorne A. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ Microbiol 2017; 19:1899-1913. [PMID: 28205377 DOI: 10.1111/1462-2920.13694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Several Chlamydiales families are associated with epitheliocystis, a common condition of the fish gill epithelium. These families share common ancestors with the Chlamydiaceae and environmental Chlamydiae. Due to the lack of culture systems, little is known about the biology of these chlamydial fish pathogens. We investigated epitheliocystis in cultured Orange-spotted grouper (Epinephelus coioides) from North Queensland, Australia. Basophilic inclusions were present in the gills of 22/31 fish and the presence of the chlamydial pathogen in the cysts was confirmed by in situ hybridization. Giant grouper (Epinephelus lanceolatus) cultured in the same systems were epitheliocystis free. 16S rRNA gene sequencing revealed a novel member of the Candidatus Parilichlamydiaceae: Ca. Similichlamydia epinephelii. Using metagenomic approaches, we obtained an estimated 68% of the chlamydial genome, revealing that this novel chlamydial pathogen shares a number of key pathogenic hallmarks with the Chlamydiaceae, including an intact Type III Secretion system and several chlamydial virulence factors. This provides additional evidence that these pathogenic mechanisms were acquired early in the evolution of this unique bacterial phylum. The identification and genomic characterization of Ca. S. epinephelii provides new opportunities to study the biology of distantly-related chlamydial pathogens while shining a new light on the evolution of pathogenicity of the Chlamydiaceae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Andrew Bridle
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Weihong Qi
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Terrence L Miller
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, 4878, Australia
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Helena M B Seth-Smith
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland.,Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
14
|
Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575-5599. [DOI: 10.1099/ijsem.0.001485] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
15
|
Ho J, Adeolu M, Khadka B, Gupta RS. Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus-Thermus" and distinguish its main constituent groups. Syst Appl Microbiol 2016; 39:453-463. [PMID: 27506333 DOI: 10.1016/j.syapm.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
Abstract
The phylum "Deinococcus-Thermus" contains two heavily researched groups of extremophilic bacteria: the highly radioresistant order Deinococcales and the thermophilic order Thermales. Very few characteristics are known that are uniquely shared by members of the phylum "Deinococcus-Thermus". Comprehensive phylogenetic and comparative analyses of >65 "Deinococcus-Thermus" genomes reported here have identified numerous molecular signatures in the forms of conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which provide distinguishing characteristics of the phylum "Deinococcus-Thermus" and its main groups. We have identified 58 unique CSIs and 155 unique CSPs that delineate different phylogenetic groups within the phylum. Of these identified traits, 24 CSIs and 29 CSPs are characteristic of the phylum "Deinococcus-Thermus" and they provide novel and reliable means to circumscribe/describe this phylum. An additional 3 CSIs and 3 CSPs are characteristic of the order Deinococcales, and 6 CSIs and 51 CSPs are characteristic of the order Thermales. The remaining 25 CSIs and 72 CSPs identified in this study are distinctive traits of genus level groups within the phylum "Deinococcus-Thermus". The molecular characteristics identified in this work provide novel and independent support for the common ancestry of the members of the phylum "Deinococcus-Thermus" and provide a new means to distinguish the main constituent clades of the phylum. Additionally, the CSIs and CSPs identified in this work may play a role in the unique extremophilic adaptations of the members of this phylum and further functional analyses of these characteristics could provide novel biochemical insights into the unique adaptations found within the phylum "Deinococcus-Thermus".
Collapse
Affiliation(s)
- Jonathan Ho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada.
| |
Collapse
|
16
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:2463-2466. [DOI: 10.1099/ijsem.0.001149] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
17
|
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2016; 66:2469-2470. [PMID: 27530227 DOI: 10.1099/ijsem.0.001150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
18
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Jelocnik M, Bachmann NL, Seth-Smith H, Thomson NR, Timms P, Polkinghorne AM. Molecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution. PeerJ 2016; 4:e1661. [PMID: 26870613 PMCID: PMC4748734 DOI: 10.7717/peerj.1661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background. Highly stable, evolutionarily conserved, small, non-integrative plasmids are commonly found in members of the Chlamydiaceae and, in some species, these plasmids have been strongly linked to virulence. To date, evidence for such a plasmid in Chlamydia pecorum has been ambiguous. In a recent comparative genomic study of porcine, ovine, bovine, and koala C. pecorum isolates, we identified plasmids (pCpec) in a pig and three koala strains, respectively. Screening of further porcine, ovine, bovine, and koala C. pecorum isolates for pCpec showed that pCpec is common, but not ubiquitous in C. pecorum from all of the infected hosts. Methods. We used a combination of (i) bioinformatic mining of previously sequenced C. pecorum genome data sets and (ii) pCpec PCR-amplicon sequencing to characterise a further 17 novel pCpecs in C. pecorum isolates obtained from livestock, including pigs, sheep, and cattle, as well as those from koala. Results and Discussion. This analysis revealed that pCpec is conserved with all eight coding domain sequences (CDSs) present in isolates from each of the hosts studied. Sequence alignments revealed that the 21 pCpecs show 99% nucleotide sequence identity, with 83 single nucleotide polymorphisms (SNPs) shown to differentiate all of the plasmids analysed in this study. SNPs were found to be mostly synonymous and were distributed evenly across all eight pCpec CDSs as well as in the intergenic regions. Although conserved, analyses of the 21 pCpec sequences resolved plasmids into 12 distinct genotypes, with five shared between pCpecs from different isolates, and the remaining seven genotypes being unique to a single pCpec. Phylogenetic analysis revealed congruency and co-evolution of pCpecs with their cognate chromosome, further supporting polyphyletic origin of the koala C. pecorum. This study provides further understanding of the complex epidemiology of this pathogen in livestock and koala hosts and paves the way for studies to evaluate the function of this putative C. pecorum virulence factor.
Collapse
Affiliation(s)
- Martina Jelocnik
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Helena Seth-Smith
- Functional Genomics Center Zurich, University of Zurich , Zurich , Switzerland
| | - Nicholas R Thomson
- Infection Genomics, The Wellcome Trust Sanger Institute , Cambridge , United Kingdom
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Adam M Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| |
Collapse
|