1
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
2
|
Claverías F, Gonzales-Siles L, Salvà-Serra F, Inganäs E, Molin K, Cumsille A, Undabarrena A, Couve E, Moore ERB, Tindall BJ, Gomila M, Camara B. Corynebacterium alimapuense sp. nov., an obligate marine actinomycete isolated from sediment of Valparaíso bay, Chile. Int J Syst Evol Microbiol 2019; 69:783-790. [PMID: 30688628 DOI: 10.1099/ijsem.0.003237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-positive, non-motile, non-spore-forming and aerobic bacterium, designated strain VA37-3T, was isolated from a marine sediment sample collected at 19.2 m water depth from Valparaíso bay, Chile. Strain VA37-3T exhibits 97.6 % 16S rRNA gene sequence similarity to Corynebacterium marinum D7015T, 96.4 % to Corynebacterium humireducens MFC-5T and 96 % to Corynebacterium testudinoris M935/96/4T; and a rpoB gene sequence similarity of 85.1 % to Corynebacterium pollutisoli VMS11T, both analyses suggesting that strain VA37-3T represents a novel species of Corynebacterium. Physiological testing indicated that strain VA37-3T requires artificial sea water or sodium-supplemented media for growth, representing the first obligate marine actinomycete of the genus Corynebacterium. The genome of the proposed new species, along with the type strains of its most closely related species were sequenced and characterized. In silico genome-based similarity analyses revealed an ANIb of 72.8 % (C. marinum D7015T), ANIm of 85.0 % (Corynebacterium mustelae DSM 45274T), tetra of 0.90 (Corynebacterium callunae DSM 20147T) and ggdc of 24.7 % (Corynebacterium kutscheri DSM 20755T) when compared with the closest related strains. The genomic DNA G+C content of strain VA37-3T was 57.0 %. Chemotaxonomic assessment of strain VN6-2T showed the major fatty acids were C18 : 1ω9c and C16 : 0. Menaquinones predominantly consisted of MK-8(II-H2). Polar lipids consisted of diphosphatidylglycerol, glycolipids, phosphatidylglycerol, phosphoglycolipid and phosphatidylinositol. Mycolic acids also were present. Overall, the results from phylogenetic, phenotypic and genomic analyses confirmed that strain VA37-3T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium alimapuense sp. nov. is proposed, with VA37-3T as the type strain (=CCUG 69366T=NCIMB 15118T).
Collapse
Affiliation(s)
- Fernanda Claverías
- 1Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Lucia Gonzales-Siles
- 2Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,3Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Francisco Salvà-Serra
- 2Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,5Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain.,3Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,4Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Inganäs
- 4Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Kent Molin
- 4Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Andrés Cumsille
- 1Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- 1Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Eduardo Couve
- 6Instituto de Biología, Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Edward R B Moore
- 2Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,3Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,4Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Brian J Tindall
- 7Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Margarita Gomila
- 5Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Beatriz Camara
- 1Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
3
|
Ye L, Zhao S, Li Y, Jiang S, Zhao Y, Li J, Yan K, Wang X, Xiang W, Liu C. Streptomyces lasiicapitis sp. nov., an actinomycete that produces kanchanamycin, isolated from the head of an ant (Lasius fuliginosus L.). Int J Syst Evol Microbiol 2017; 67:1529-1534. [PMID: 28005517 DOI: 10.1099/ijsem.0.001756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a screening for novel and biotechnologically useful actinobacteria in insects, a kanchanamycin-producing actinomycete with antifungal activity, designated strain 3H-HV17(2)T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-HV17(2)T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces spectabilis NBRC 13424T (98.90 %, with which it phylogenetically clustered, Streptomyces alboflavus NRRL B-2373T (98.65 %) and Streptomyces flavofungini NBRC 13371T (98.36 %). Phylogenetic analysis based on the gyrB gene also supported the close relationship of these strains. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-HV17(2)T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that strain 3H-HV17(2)T could be distinguished from these strains. Therefore, strain 3H-HV17(2)T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasiicapitis sp. nov. is proposed. The type strain is 3H-HV17(2)T (=CGMCC 4.7349T=DSM 103124T).
Collapse
Affiliation(s)
- Lan Ye
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Shanshan Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Yao Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Shanwen Jiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Yue Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Jinmeng Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Kai Yan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
4
|
Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S. Streptomyces verrucosisporus sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2016; 66:3607-3613. [PMID: 27306744 DOI: 10.1099/ijsem.0.001240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).
Collapse
Affiliation(s)
- Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani 12120, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Bai L, Liu C, Guo L, Piao C, Li Z, Li J, Jia F, Wang X, Xiang W. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2015; 109:253-61. [PMID: 26608172 DOI: 10.1007/s10482-015-0628-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)).
Collapse
Affiliation(s)
- Lu Bai
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Lifeng Guo
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chenyu Piao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Zhilei Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Jiansong Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Feiyu Jia
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|