1
|
Wu G, Zhou J, Zheng J, Abdalmegeed D, Tian J, Wang M, Sun S, Sedjoah RCAA, Shao Y, Sun S, Xin Z. Construction of lipopeptide mono-producing Bacillus strains and comparison of their antimicrobial activity. FOOD BIOSCI 2023; 53:102813. [DOI: 10.1016/j.fbio.2023.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
2
|
Liu GH, Narsing Rao MP, Liu DQ, Tang R, Chen QQ, Shi H, Liu B, Li WJ, Zhou SG. Cytobacillus citreus sp. nov., isolated from citrus rhizosphere soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 36920836 DOI: 10.1099/ijsem.0.005753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
A Gram-stain-positive, rod-shaped and motile strain, designated FJAT-49705T, was isolated from the citrus rhizosphere soil sample. Strain FJAT-49705T grew at 20-40 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, pH 7.0) with 0-5 % (w/v) NaCl (optimum, 2 %). Strain FJAT-49705T showed high 16S rRNA gene sequence similarity to 'Bacillus dafuensis' FJAT-25496T (99.7 %) and Cytobacillus solani FJAT-18043T (98.0 %). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic trees (based on 71 bacterial single-copy genes), strain FJAT-49705T clustered with the members of the genus Cytobacillus. MK-7 was the only isoprenoid quinone present. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The genomic DNA G+C content was 36.9 %. The average nucleotide identity (ANI) values between FJAT-49705T and 'B. dafuensis' FJAT-25496T and C. solani FJAT-18043T were below the cut-off level (95-96 %) recommended as the ANI criterion for interspecies identity. Based on the above results, strain FJAT-49705T represents a novel species of the genus Cytobacillus, for which the name Cytobacillus citreus sp. nov. is proposed. The type strain is FJAT-49705T (=CCTCC AB 2019243T= LMG 31580T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Manik Prabhu Narsing Rao
- Programa de Doctorado en Ciencias Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ding-Qi Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rong Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Qian-Qian Chen
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Huai Shi
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Bo Liu
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| |
Collapse
|
3
|
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. [PMID: 31617837 DOI: 10.1099/ijsem.0.003775] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus, harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known Bacillus species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among Bacillus species, 352 available genome sequences from the family Bacillaceae were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core Bacillaceae proteins, 87 proteins conserved within the phylum Firmicutes, GyrA-GyrB-RpoB-RpoC proteins, and UvrD-PolA proteins. All trees exhibited nearly identical branching of Bacillus species and consistently displayed six novel monophyletic clades encompassing 5-23 Bacillus species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other Bacillaceae species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of Bacillus species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct 'Bacillus' clades, we propose the transfer of species from these clades into six novel Bacillaceae genera viz. Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus Bacillus.
Collapse
Affiliation(s)
- Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
4
|
Bacillus yapensis sp. nov., a novel piezotolerant bacterium isolated from deep-sea sediment of the Yap Trench, Pacific Ocean. Antonie van Leeuwenhoek 2019; 113:389-396. [DOI: 10.1007/s10482-019-01348-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
5
|
Du Y, Xu Z, Yu G, Liu W, Zhou Q, Yang D, Li J, Chen L, Zhang Y, Xue C, Cao Y. A Newly Isolated Bacillus subtilis Strain Named WS-1 Inhibited Diarrhea and Death Caused by Pathogenic Escherichia coli in Newborn Piglets. Front Microbiol 2019; 10:1248. [PMID: 31249559 PMCID: PMC6582243 DOI: 10.3389/fmicb.2019.01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023] Open
Abstract
Bacillus subtilis is recognized as a safe and reliable human and animal probiotic and is associated with bioactivities such as production of vitamin and immune stimulation. Additionally, it has great potential to be used as an alternative to antimicrobial drugs, which is significant in the context of antibiotic abuse in food animal production. In this study, we isolated one strain of B. subtilis, named WS-1, from apparently healthy pigs growing with sick cohorts on one Escherichia coli endemic commercial pig farm in Guangdong, China. WS-1 can strongly inhibit the growth of pathogenic E. coli in vitro. The B. subtilis strain WS-1 showed typical Bacillus characteristics by endospore staining, biochemical test, enzyme activity analysis, and 16S rRNA sequence analysis. Genomic analysis showed that the B. subtilis strain WS-1 shares 100% genomic synteny with B. subtilis with a size of 4,088,167 bp. Importantly, inoculation of newborn piglets with 1.5 × 1010 CFU of B. subtilis strain WS-1 by oral feeding was able to clearly inhibit diarrhea (p < 0.05) and death (p < 0.05) caused by pathogenic E. coli in piglets. Furthermore, histopathological results showed that the WS-1 strain could protect small intestine from lesions caused by E. coli infection. Collectively, these findings suggest that the probiotic B. subtilis strain WS-1 acts as a potential biocontrol agent protecting pigs from pathogenic E. coli infection. Importance: In this work, one B. subtilis strain (WS-1) was successfully isolated from apparently healthy pigs growing with sick cohorts on one E. coli endemic commercial pig farm in Guangdong, China. The B. subtilis strain WS-1 was identified to inhibit the growth of pathogenic E. coli both in vitro and in vivo, indicating its potential application in protecting newborn piglets from diarrhea caused by E. coli infections. The isolation and characterization will help better understand this bacterium, and the strain WS-1 can be further explored as an alternative to antimicrobial drugs to protect human and animal health.
Collapse
Affiliation(s)
- Yunping Du
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Guolian Yu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Wei Liu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Qingfeng Zhou
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Dehong Yang
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Jie Li
- Department of Biological Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China
| | - Li Chen
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Oren A, Garrity GM. Validation List No. 169. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:2456-2458. [PMID: 27400683 DOI: 10.1099/ijsem.0.001181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
7
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, >published. Int J Syst Evol Microbiol 2016; 66:1913-1915. [PMID: 27142818 DOI: 10.1099/ijsem.0.001030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|