1
|
Pei H, Wang L, Xia X, Dong C, Tan B, Zhang Y, Lin Z, Ding J. Sulfamethoxazole stress endangers the gut health of sea cucumber (Apostichopus japonicus) and affects host metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116099. [PMID: 38422788 DOI: 10.1016/j.ecoenv.2024.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.
Collapse
Affiliation(s)
- Honglin Pei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Xinglong Xia
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Changkun Dong
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Bamei Tan
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yanmin Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zhiping Lin
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Korenskaia AY, Matushkin YG, Mustafin ZS, Lashin SA, Klimenko AI. Bioinformatic Analysis Reveals the Role of Translation Elongation Efficiency Optimisation in the Evolution of Ralstonia Genus. BIOLOGY 2023; 12:1338. [PMID: 37887048 PMCID: PMC10604486 DOI: 10.3390/biology12101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Translation efficiency modulates gene expression in prokaryotes. The comparative analysis of translation elongation efficiency characteristics of Ralstonia genus bacteria genomes revealed that these characteristics diverge in accordance with the phylogeny of Ralstonia. The first branch of this genus is a group of bacteria commonly found in moist environments such as soil and water that includes the species R. mannitolilytica, R. insidiosa, and R. pickettii, which are also described as nosocomial infection pathogens. In contrast, the second branch is plant pathogenic bacteria consisting of R. solanacearum, R. pseudosolanacearum, and R. syzygii. We found that the soil Ralstonia have a significantly lower number and energy of potential secondary structures in mRNA and an increased role of codon usage bias in the optimization of highly expressed genes' translation elongation efficiency, not only compared to phytopathogenic Ralstonia but also to Cupriavidus necator, which is closely related to the Ralstonia genus. The observed alterations in translation elongation efficiency of orthologous genes are also reflected in the difference of potentially highly expressed gene' sets' content among Ralstonia branches with different lifestyles. Analysis of translation elongation efficiency characteristics can be considered a promising approach for studying complex mechanisms that determine the evolution and adaptation of bacteria in various environments.
Collapse
Affiliation(s)
- Aleksandra Y. Korenskaia
- Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia; (A.Y.K.); (Z.S.M.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Yury G. Matushkin
- Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia; (A.Y.K.); (Z.S.M.)
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Zakhar S. Mustafin
- Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia; (A.Y.K.); (Z.S.M.)
| | - Sergey A. Lashin
- Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia; (A.Y.K.); (Z.S.M.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Alexandra I. Klimenko
- Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia; (A.Y.K.); (Z.S.M.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Dahl SA, Seifert J, Camarinha-Silva A, Hernández-Arriaga A, Windisch W, König A. "Get the best out of what comes in" - adaptation of the microbiota of chamois ( Rupicapra rupicapra) to seasonal forage availability in the Bavarian Alps. Front Microbiol 2023; 14:1238744. [PMID: 37849922 PMCID: PMC10577445 DOI: 10.3389/fmicb.2023.1238744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
As an inhabitant of the Alps, chamois are exposed to significant climatic changes throughout the year and are also strongly confronted with changing forage availability. Besides horizontal and vertical migratory movements as an adaptation, it undergoes physiological transformations and dynamic changes in the ruminal microbiota. The following study used 48 chamois of different ages and genders to investigate to which extent the ingested food plants, the resulting crude nutrients in the rumen (reticulorumen) contents, and the bacterial microbiota in the rumen and their fermentation products were influenced by the changes over the seasons. Very little is known about the microbiota of wild ruminants, and many bacterial taxa could only be determined to certain taxonomic levels in this study. However, adapted microbiota reflects the significant changes in the ingested forage and the resulting crude nutrients. For some taxa, our results indicated potential functional relationships. In addition, 15 genera were identified, representing almost 90% of the relative abundance, forming the central part of the microbial community throughout the year. The successful and flexible adaptation of chamois is reflected in the chamois rumen's nutrient and microbial profile. This is also the first study that analyzes the microbiota of the chamois using rumen samples and considers the microbiota in a seasonal comparison.
Collapse
Affiliation(s)
- Sarah-Alica Dahl
- Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Freising, Germany
| | - Jana Seifert
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Angélica Hernández-Arriaga
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Wilhelm Windisch
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas König
- Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Le TB, Truong MN, Nguyen BT, Vo DQ, Phan TTP. Draft genome sequencing data of the bacterial wilt, Ralstonia pseudosolanacearum T2C-Rasto, from Cucumis sativus, in An Giang province, Mekong Delta - Southwest Vietnam. Data Brief 2023; 48:109252. [PMID: 37383731 PMCID: PMC10293977 DOI: 10.1016/j.dib.2023.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Ralstonia solanacearum is one of the major plant pathogens causing bacterial wilt disease in a variety of plant species. In Vietnam, according to our knowledge, we first discovered R. pseudosolanacearum, which is one of four phylotypes of R. solanacearum, as a causal agent wilting in cucumber (Cucumis sativus). Due to the latent infection of R. pseudosolanacearum and its heterogenous species complex, controlling the disease becomes difficult.Therefore, the study of R. pseudosolanacearum has great significance to generate effective disease management and treatment. Here, we assembled the isolate R. pseudosolanacearum strain T2C-Rasto, which possessed 183 contigs with 67.03% GC content of 5,628,295 bp in. This assembly included 4,893 protein sequences, 52 tRNA genes, and 3 rRNA genes. In addition, the virulence genes involved in the colonization of the bacterium and wilting to the host were defined in twitching motility (pilT, pilJ, pilH and pilG), chemotaxis (cheA and cheW), type VI secretion system (ompA, hcp, paar, tssB, tssC, tssF, tssG, tssK, tssH, tssJ, tssL and tssM), type III secretion system (hrpB and hrpF).
Collapse
Affiliation(s)
- Thanh Binh Le
- University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
- National Center for Technological Progress – HCM Branch, Ho Chi Minh City, Viet Nam
| | - Minh Ngoc Truong
- National Center for Technological Progress – HCM Branch, Ho Chi Minh City, Viet Nam
| | - Ba Tho Nguyen
- National Center for Technological Progress – HCM Branch, Ho Chi Minh City, Viet Nam
| | - Dinh Quang Vo
- National Center for Technological Progress – HCM Branch, Ho Chi Minh City, Viet Nam
| | - Trang Thi Phuong Phan
- University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
5
|
Ariute JC, Felice AG, Soares S, da Gama MAS, de Souza EB, Azevedo V, Brenig B, Aburjaile F, Benko-Iseppon AM. Characterization and Association of Rips Repertoire to Host Range of Novel Ralstonia solanacearum Strains by In Silico Approaches. Microorganisms 2023; 11:microorganisms11040954. [PMID: 37110377 PMCID: PMC10144018 DOI: 10.3390/microorganisms11040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 04/29/2023] Open
Abstract
Ralstonia solanacearum species complex (RSSC) cause several phytobacteriosis in many economically important crops around the globe, especially in the tropics. In Brazil, phylotypes I and II cause bacterial wilt (BW) and are indistinguishable by classical microbiological and phytopathological methods, while Moko disease is caused only by phylotype II strains. Type III effectors of RSSC (Rips) are key molecular actors regarding pathogenesis and are associated with specificity to some hosts. In this study, we sequenced and characterized 14 newly RSSC isolates from Brazil's Northern and Northeastern regions, including BW and Moko ecotypes. Virulence and resistance sequences were annotated, and the Rips repertoire was predicted. Confirming previous studies, RSSC pangenome is open as α≅0.77. Genomic information regarding these isolates matches those for R. solanacearum in NCBI. All of them fit in phylotype II with a similarity above 96%, with five isolates in phylotype IIB and nine in phylotype IIA. Almost all R. solanacearum genomes in NCBI are actually from other species in RSSC. Rips repertoire of Moko IIB was more homogeneous, except for isolate B4, which presented ten non-shared Rips. Rips repertoire of phylotype IIA was more diverse in both Moko and BW, with 43 common shared Rips among all 14 isolates. New BW isolates shared more Rips with Moko IIA and Moko IIB than with other public BW genome isolates from Brazil. Rips not shared with other isolates might contribute to individual virulence, but commonly shared Rips are good avirulence candidates. The high number of Rips shared by new Moko and BW isolates suggests they are actually Moko isolates infecting solanaceous hosts. Finally, infection assays and Rips expression on different hosts are needed to better elucidate the association between Rips repertoire and host specificities.
Collapse
Affiliation(s)
- Juan Carlos Ariute
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Genetics Department, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil
| | - Andrei Giachetto Felice
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | - Siomar Soares
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | | | - Elineide Barbosa de Souza
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution Department, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, 37077 Göttingen, Germany
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ana Maria Benko-Iseppon
- Genetics Department, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil
| |
Collapse
|
6
|
Zhao J, Pan J, Zhang Z, Chen Z, Mai K, Zhang Y. Fishmeal Protein Replacement by Defatted and Full-Fat Black Soldier Fly Larvae Meal in Juvenile Turbot Diet: Effects on the Growth Performance and Intestinal Microbiota. AQUACULTURE NUTRITION 2023; 2023:8128141. [PMID: 37089257 PMCID: PMC10115534 DOI: 10.1155/2023/8128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of the same fishmeal protein level replaced by black soldier fly larvae (Hermetia illucens) meal (BSFL) with different lipid contents on the growth performance and intestinal health of juvenile turbot (Scophthalmus maximus L.) (initial body weight 12.64 g). Three isonitrogenous and isolipidic diets were formulated: fish meal-based diet (FM), diets DF and FF, in which 14% fish meal protein of the FM diet was replaced by defatted and full-fat BSFL, respectively. There were no significant differences in growth performance, intestinal morphology, and mucosal barrier function between the DF and the FM group. However, diet FF markedly reduced the growth performance, intestinal perimeter ratio, and the gene expression of anti-inflammatory cytokine TGF-β (P < 0.05). Compared to group FF, the communities of intestinal microbiota in group DF were more similar to group FM. Moreover, diet DF decreased the abundance of some potential pathogenic bacteria and enriched the potential probiotics, such as Bacillus. Diet FF obviously altered the composition of intestinal microbiota and increased the abundance of some potential pathogenic bacteria. These results suggested that the application of defatted BSFL showed more positive effects on fish growth and intestinal health than the full-fat BSFL, and the intestinal microbiota was closely involved in these effects.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jintao Pan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhonghao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhichu Chen
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
7
|
Pais AKL, dos Santos LVS, Albuquerque GMR, de Farias ARG, Silva WJ, Balbino VDQ, Silva AMF, da Gama MAS, de Souza EB. Comparative genomics and phylogenomics of the Ralstonia solanacearum Moko ecotype and its symptomatological variants. Genet Mol Biol 2022; 45:e20220038. [PMID: 36469480 PMCID: PMC9731368 DOI: 10.1590/1678-4685-gmb-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/14/2022] [Indexed: 12/04/2022] Open
Abstract
Banana tree bacterial wilt is caused by the Ralstonia solanacearum Moko ecotype. These strains vary in their symptom progression in banana, and are classified as typical Moko variants (phylotype IIA and IIB strains from across Central and South America), Bugtok variant (Philippines), and Sergipe facies (the states of Sergipe and Alagoas, Brazil). This study used comparative genomic and phylogenomic approaches to identify a correlation between the symptom progression of the Moko ecotypes based on the analysis of 23 available genomes. Average nucleotide identity and in silico DNA-DNA hybridization revealed a high correlation (>96% and >78%, respectively) between the genomes of Moko variants. Pan-genome analysis identified 21.3% of inheritable regions between representatives of the typical Moko and Sergipe facies variants, which could be traced to an abundance of exclusive homolog clusters. Moko ecotype genomes shared 1,951 orthologous genes, but representatives with typical symptoms did not display unique orthologues. Moreover, Bugtok disease and Sergipe facies genomes did not share any unique genes, suggesting convergent evolution to a shared symptom progression. Overall, genomic and phylogenomic analyses were insufficient to differentiate the Moko variants based on symptom progression.
Collapse
Affiliation(s)
- Ana Karolina Leite Pais
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de
Agronomia, Recife, PE, Brazil
| | | | | | | | - Wilson José Silva
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética,
Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
8
|
Meroterpenoids Possibly Produced by a Bacterial Endosymbiont of the Tropical Basidiomycete Echinochaete brachypora. Biomolecules 2022; 12:biom12060755. [PMID: 35740880 PMCID: PMC9221130 DOI: 10.3390/biom12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
A mycelial culture of the African basidiomycete Echinochaete cf. brachypora was studied for biologically active secondary metabolites, and four compounds were isolated from its crude extract derived from shake flask fermentations, using preparative high-performance liquid chromatography (HPLC). The pure metabolites were identified using extensive nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Aside from the new metabolites 1-methoxyneomarinone (1) and (E)-3-methyl-5-(-12,13,14-trimethylcyclohex-10-en-6-yl)pent-2-enoic acid (4), the known metabolites neomarinone (2) and fumaquinone (4) were obtained. Such compounds had previously only been reported from Actinobacteria but were never isolated from the cultures of a fungus. This observation prompted us to evaluate whether the above metabolites may actually have been produced by an endosymbiontic bacterium that is associated with the basidiomycete. We have indeed been able to characterize bacterial 16S rDNA in the fungal mycelia, and the production of the metabolites stopped when the fungus was sub-cultured on a medium containing antibacterial antibiotics. Therefore, we have found strong evidence that compounds 1–4 are not of fungal origin. However, the endofungal bacterium was shown to belong to the genus Ralstonia, which has never been reported to produce similar metabolites to 1–4. Moreover, we failed to obtain the bacterial strain in pure culture to provide final proof for its identity. In any case, the current report is the first to document that polyporoid Basidiomycota are associated with endosymbionts and constitutes the first report on secondary metabolites from the genus Echinochaete.
Collapse
|
9
|
Albuquerque GMR, Fonseca FCA, Boiteux LS, Borges RCF, Miller RNG, Lopes CA, Souza EB, Fonseca MEN. Stability analysis of reference genes for RT-qPCR assays involving compatible and incompatible Ralstonia solanacearum-tomato 'Hawaii 7996' interactions. Sci Rep 2021; 11:18719. [PMID: 34548514 PMCID: PMC8455670 DOI: 10.1038/s41598-021-97854-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Reverse transcription-quantitative PCR (RT-qPCR) is an analytical tool for gene expression quantification. Reference genes are not yet available for gene expression analysis during interactions of Ralstonia solanacearum with ‘Hawaii 7996’ (the most stable source of resistance in tomato). Here, we carried out a multi-algorithm stability analysis of eight candidate reference genes during interactions of ‘Hawaii 7996’ with one incompatible/avirulent and two compatible/virulent (= resistance-breaking) bacterial isolates. Samples were taken at 24- and 96-h post-inoculation (HPI). Analyses were performed using the ∆∆Ct method and expression stability was estimated using BestKeeper, NormFinder, and geNorm algorithms. TIP41 and EF1α (with geNorm), TIP41 and ACT (with NormFinder), and UBI3 and TIP41 (with BestKeeper), were the best combinations for mRNA normalization in incompatible interactions at 24 HPI and 96 HPI. The most stable genes in global compatible and incompatible interactions at 24 HPI and 96 HPI were PDS and TIP41 (with geNorm), TIP41 and ACT (with NormFinder), and UBI3 and PDS/EXP (with BestKeeper). Global analyses on the basis of the three algorithms across 20 R. solanacearum-tomato experimental conditions identified UBI3, TIP41 and ACT as the best choices as reference tomato genes in this important pathosystem.
Collapse
Affiliation(s)
- Greecy M R Albuquerque
- Department of Agronomy, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.
| | - Fernando C A Fonseca
- Departament of Academic Areas, Instituto Federal de Goiás (IFG), Águas Lindas,, GO, Brazil
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research, Embrapa Vegetables (CNPH), Brasília, DF, Brazil
| | - Rafaela C F Borges
- Plant Pathology Department, ICB, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Robert N G Miller
- Plant Pathology Department, ICB, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Department of Cell Biology, ICB, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Carlos A Lopes
- National Center for Vegetable Crops Research, Embrapa Vegetables (CNPH), Brasília, DF, Brazil
| | - Elineide B Souza
- Department of Biology, Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil
| | - Maria Esther N Fonseca
- National Center for Vegetable Crops Research, Embrapa Vegetables (CNPH), Brasília, DF, Brazil
| |
Collapse
|
10
|
Paudel S, Dobhal S, Alvarez AM, Arif M. Taxonomy and Phylogenetic Research on Ralstonia solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020; 9:E886. [PMID: 33113847 PMCID: PMC7694096 DOI: 10.3390/pathogens9110886] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
The bacterial wilt pathogen, first known as Bacillus solanacearum, has undergone numerous taxonomic changes since its first description in 1896. The history and significance of this pathogen is covered in this review with an emphasis on the advances in technology that were used to support each reclassification that finally led to the current separation of Ralstonia solanacearum into three genomic species. Frequent name changes occurred as methodology transitioned from phenotypic, biochemical, and molecular studies, to genomics and functional genomics. The diversity, wide host range, and geographical distribution of the bacterial wilt pathogen resulted in its division into three species as genomic analyses elucidated phylogenetic relationships among strains. Current advances in phylogenetics and functional genomics now open new avenues for research into epidemiology and control of the devastating bacterial wilt disease.
Collapse
Affiliation(s)
| | | | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.P.); (S.D.)
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.P.); (S.D.)
| |
Collapse
|
11
|
Gomes SIF, Kielak AM, Hannula SE, Heinen R, Jongen R, Keesmaat I, De Long JR, Bezemer TM. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim Microbiome 2020; 2:37. [PMID: 33499994 PMCID: PMC7807420 DOI: 10.1186/s42523-020-00055-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insect-associated microorganisms can provide a wide range of benefits to their host, but insect dependency on these microbes varies greatly. The origin and functionality of insect microbiomes is not well understood. Many caterpillars can harbor symbionts in their gut that impact host metabolism, nutrient uptake and pathogen protection. Despite our lack of knowledge on the ecological factors driving microbiome assemblages of wild caterpillars, they seem to be highly variable and influenced by diet and environment. Several recent studies have shown that shoot-feeding caterpillars acquire part of their microbiome from the soil. Here, we examine microbiomes of a monophagous caterpillar (Tyria jacobaeae) collected from their natural host plant (Jacobaea vulgaris) growing in three different environments: coastal dunes, natural inland grasslands and riverine grasslands, and compare the bacterial communities of the wild caterpillars to those of soil samples collected from underneath each of the host plants from which the caterpillars were collected. RESULTS The microbiomes of the caterpillars were dominated by Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Only 5% of the total bacterial diversity represented 86.2% of the total caterpillar's microbiome. Interestingly, we found a high consistency of dominant bacteria within the family Burkholderiaceae in all caterpillar samples across the three habitats. There was one amplicon sequence variant belonging to the genus Ralstonia that represented on average 53% of total community composition across all caterpillars. On average, one quarter of the caterpillar microbiome was shared with the soil. CONCLUSIONS We found that the monophagous caterpillars collected from fields located more than 100 km apart were all dominated by a single Ralstonia. The remainder of the bacterial communities that were present resembled the local microbial communities in the soil in which the host plant was growing. Our findings provide an example of a caterpillar that has just a few key associated bacteria, but that also contains a community of low abundant bacteria characteristic of soil communities.
Collapse
Affiliation(s)
- Sofia I. F. Gomes
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Anna M. Kielak
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Robin Heinen
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Present Address: Lehrstuhl für Terrestrische Ökologie, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Renske Jongen
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Ivor Keesmaat
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jonathan R. De Long
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Present Address: Greenhouse Horticulture, Wageningen University and Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
13
|
Chu L, Chen D, Wang J, Yang Z, Shen Y. Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:190-197. [PMID: 31376964 DOI: 10.1016/j.wasman.2019.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation coupled with peroxymonosulfate (PMS) oxidation was developed to degrade antibiotics and antibiotic resistance genes (ARGs) from the erythromycin fermentation (EryF) residual wastes. The experimental results showed that the ERY content and ARGs abundance decreased with increase of the absorbed dose and PMS dosage and gamma irradiation was more effective to abate ARGs from the EryF wastes. The removal efficiency of ERY reached 49-55% and more than 96-99% of ARGs (1.32-2.55 log) was eliminated with the absorbed dose of 25-50 kGy and PMS dosage of 50-100 mM. Illumina pyrosequencing revealed that 3 bacterial phyla, Proteobacteria, Firmicutes and Fusobacteria were highly enriched and the ARGs-linked hosts were affiliated to the genera Aeromonas, Enterobacteriaceae and Enterobacter in the phylum Proteobacteria. The abundance of the ARGs-linked bacteria decreased by gamma/PMS treatment. Ionizing radiation/PMS treatment with the doses of 25 kGy and 50 mM PMS is proposed for potential practical application.
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhiling Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- Yili Chuanning Biotechnology Company, Ltd., Xinjiang 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
14
|
Liang F, Lin R, Yao Y, Xiao Y, Zhang M, Shi C, He X, Zhou B, Wang B. Systematic Identification of Pathogenic Streptomyces sp. AMCC400023 That Causes Common Scab and Genomic Analysis of Its Pathogenicity Island. PHYTOPATHOLOGY 2019; 109:1115-1128. [PMID: 30829555 DOI: 10.1094/phyto-07-18-0266-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato scab, a serious soilborne disease caused by Streptomyces spp., occurs in potato-growing areas worldwide and results in severe economic losses. In this paper, the pathogenicity of Streptomyces strain AMCC400023, isolated from potato scabs in Hebei Province, China, was verified systematically by the radish seedling test, the potato tuber slice assay, the potted back experiment, and the detection of phytotoxin thaxtomin A. Morphological, physiological, and biochemical characteristics were determined, and the 16S ribosomal RNA analyses of Streptomyces sp. AMCC400023 were carried out. To obtain the accurate taxonomic status of the pathogen strain, the whole genome was sequenced, and the phylogenetic tree among 31 Streptomyces genomes was formed. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) were analyzed, and at the same time, the toxicity-related genes between Streptomyces sp. AMCC400023 and Streptomyces scabiei were compared, all based on the whole-genome level. All of the data supported that, instead of a member of S. scabiei, test strain Streptomyces sp. AMCC400023 was a distinct phytopathogen of potato common scab, which had a relatively close relationship with S. scabiei while separating clearly from S. scabiei at least in the species level of taxonomic status. The complete pathogenicity island (PAI) composition of Streptomyces sp. AMCC400023 was identified, which contained a toxin region and a colonization region. It was conjectured that the PAI of Streptomyces sp. AMCC400023 might be directly or indirectly acquired from S. scabiei 87-22 by horizontal gene transfer, or at the very least, there was a very close homologous relationship between the two pathogens as indicated by a series of analyses, such as phylogenetic relationships among 31 Streptomyces species, ANI and isDDH analyses, PAI structure mapping, thaxtomin A synthetic gene cluster tree construction, and most important, the collinearity analysis at the genome level.
Collapse
Affiliation(s)
- Feiyang Liang
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Rongshan Lin
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yaqian Yao
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Mingshuo Zhang
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Chunyu Shi
- 3 Agricultural College, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Xiaoli He
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Bo Zhou
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
- 4 National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, People's Republic of China
| | - Bing Wang
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| |
Collapse
|
15
|
Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e36178] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This paper describes a novel alignment-free distance-based procedure for inferring phylogenetic trees from genome contig sequences using publicly available bioinformatics tools. For each pair of genomes, a dissimilarity measure is first computed and next transformed to obtain an estimation of the number of substitution events that have occurred during their evolution. These pairwise evolutionary distances are then used to infer a phylogenetic tree and assess a confidence support for each internal branch. Analyses of both simulated and real genome datasets show that this bioinformatics procedure allows accurate phylogenetic trees to be reconstructed with fast running times, especially when launched on multiple threads. Implemented in a publicly available script, named JolyTree, this procedure is a useful approach for quickly inferring species trees without the burden and potential biases of multiple sequence alignments.
Collapse
|
16
|
Ke S, Fang S, He M, Huang X, Yang H, Yang B, Chen C, Huang L. Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition. BMC Vet Res 2019; 15:172. [PMID: 31126262 PMCID: PMC6534858 DOI: 10.1186/s12917-019-1918-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background The gut microbiota impacts on a range of host biological processes, and the imbalances in its composition are associated with pathology. Though the understanding of contribution of the many factors, e.g. gender, diet and age, in the development of gut microbiota has been well established, the dynamic changes of the phylogenetic composition and the interaction networks along with the age remain unclear in pigs. Results Here we applied 16S ribosomal RNA gene sequencing, enterotype-like clustering (Classification of the gut microbiome into distinct types) and phylogenetic co-occurrence network to explore the dynamic changes of pig gut microbiome following the ages with a successive investigation at four ages in a cohort of 953 pigs. We found that Firmicutes and Bacteroidetes are two predominant phyla throughout the experimental period. The richness of gut microbiota was significantly increased from 25 to 240 days of age. Principal coordinates analysis showed a clear difference in the gut microbial community compositions between pre-weaning piglets and the pigs at the other three age groups. The gut microbiota of pre-weaning piglets was clearly classified into two enterotypes, which were dominated by Fusobacterium and p-75-a5, respectively. However, Prevotella and Treponema were the main drivers of the enterotypes for pigs at the age of 80, 120 and 240 days. Besides the piglets, even some adult pigs switched putative enterotypes between ages. We confirmed that the topological features of phylogenetic co-occurrence networks, including scale, stability and complexity were increased along with the age. The biological significance for modules in the network of piglets were mainly associated with the utilization of simple carbohydrate and lactose, whereas the sub-networks identified at the ages of 80, 120 and 240 days may be involved in the digestion of complex dietary polysaccharide. The modules related to the metabolism of protein and amino acids could be identified in the networks at 120 and 240 days. This dynamic change of the functional capacities of gut microbiome was further supported by functional prediction analysis. Conclusions The present study provided meaningful biological insights into the age-based dynamic shifts of ecological community of porcine gut microbiota. Electronic supplementary material The online version of this article (10.1186/s12917-019-1918-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanlin Ke
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Xiaochang Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China.
| |
Collapse
|
17
|
Moriuchi R, Dohra H, Kanesaki Y, Ogawa N. Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Cupriavidus necator NH9 and Reclassification of the Strains of the Genera Cupriavidus and Ralstonia Based on Phylogenetic and Whole-Genome Sequence Analyses. Front Microbiol 2019; 10:133. [PMID: 30809202 PMCID: PMC6379261 DOI: 10.3389/fmicb.2019.00133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Cupriavidus necator NH9, a 3-chlorobenzoate (3-CB)-degrading bacterium, was isolated from soil in Japan. In this study, the complete genome sequence of NH9 was obtained via PacBio long-read sequencing to better understand the genetic components contributing to the strain's ability to degrade aromatic compounds, including 3-CB. The genome of NH9 comprised two circular chromosomes (4.3 and 3.4 Mb) and two circular plasmids (427 and 77 kb) containing 7,290 coding sequences, 15 rRNA and 68 tRNA genes. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the protein-coding sequences in NH9 revealed a capacity to completely degrade benzoate, 2-, 3-, or 4-hydroxybenzoate, 2,3-, 2,5-, or 3,4-dihydroxybenzoate, benzoylformate, and benzonitrile. To validate the identification of NH9, phylogenetic analyses (16S rRNA sequence-based tree and multilocus sequence analysis) and whole-genome sequence analyses (average nucleotide identity, percentage of conserved proteins, and tetra-nucleotide analyses) were performed, confirming that NH9 is a C. necator strain. Over the course of our investigation, we noticed inconsistencies in the classification of several strains that were supposed to belong to the two closely-related genera Cupriavidus and Ralstonia. As a result of whole-genome sequence analysis of 46 Cupriavidus strains and 104 Ralstonia strains, we propose that the taxonomic classification of 41 of the 150 strains should be changed. Our results provide a clear delineation of the two genera based on genome sequences, thus allowing taxonomic identification of strains belonging to these two genera.
Collapse
Affiliation(s)
- Ryota Moriuchi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
18
|
da Silva Xavier A, de Almeida JCF, de Melo AG, Rousseau GM, Tremblay DM, de Rezende RR, Moineau S, Alfenas‐Zerbini P. Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2019; 20:223-239. [PMID: 30251378 PMCID: PMC6637880 DOI: 10.1111/mpp.12750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of an array of short DNA repeat sequences separated by unique spacer sequences that are flanked by associated (Cas) genes. CRISPR-Cas systems are found in the genomes of several microbes and can act as an adaptive immune mechanism against invading foreign nucleic acids, such as phage genomes. Here, we studied the CRISPR-Cas systems in plant-pathogenic bacteria of the Ralstonia solanacearum species complex (RSSC). A CRISPR-Cas system was found in 31% of RSSC genomes present in public databases. Specifically, CRISPR-Cas types I-E and II-C were found, with I-E being the most common. The presence of the same CRISPR-Cas types in distinct Ralstonia phylotypes and species suggests the acquisition of the system by a common ancestor before Ralstonia species segregation. In addition, a Cas1 phylogeny (I-E type) showed a perfect geographical segregation of phylotypes, supporting an ancient acquisition. Ralstoniasolanacearum strains CFBP2957 and K60T were challenged with a virulent phage, and the CRISPR arrays of bacteriophage-insensitive mutants (BIMs) were analysed. No new spacer acquisition was detected in the analysed BIMs. The functionality of the CRISPR-Cas interference step was also tested in R. solanacearum CFBP2957 using a spacer-protospacer adjacent motif (PAM) delivery system, and no resistance was observed against phage phiAP1. Our results show that the CRISPR-Cas system in R. solanacearum CFBP2957 is not its primary antiviral strategy.
Collapse
Affiliation(s)
- André da Silva Xavier
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Juliana Cristina Fraleon de Almeida
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Alessandra Gonçalves de Melo
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
| | - Geneviève M. Rousseau
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Denise M. Tremblay
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Poliane Alfenas‐Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| |
Collapse
|
19
|
Hassen W, Neifar M, Cherif H, Najjari A, Chouchane H, Driouich RC, Salah A, Naili F, Mosbah A, Souissi Y, Raddadi N, Ouzari HI, Fava F, Cherif A. Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation. Front Microbiol 2018; 9:34. [PMID: 29527191 PMCID: PMC5829100 DOI: 10.3389/fmicb.2018.00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40°C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40-90°C), pH (6-10), and salt concentration (up to 300 mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.
Collapse
Affiliation(s)
- Wafa Hassen
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Afef Najjari
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Rim C. Driouich
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Asma Salah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Fatma Naili
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Yasmine Souissi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| | - Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Hadda I. Ouzari
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole of Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
20
|
On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol 2017; 67:5296-5311. [PMID: 29034857 PMCID: PMC5845751 DOI: 10.1099/ijsem.0.002255] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.
Collapse
Affiliation(s)
- Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln, New Zealand
| | - William G. Miller
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, CA, USA
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - James G. Fox
- Department of Comparative Medicine, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambiridge, MA 02139, USA
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
21
|
Genome Sequence of Ralstonia pseudosolanacearum Strains with Compatible and Incompatible Interactions with the Major Tomato Resistance Source Hawaii 7996. GENOME ANNOUNCEMENTS 2017; 5:5/36/e00982-17. [PMID: 28883150 PMCID: PMC5589544 DOI: 10.1128/genomea.00982-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here the complete genome sequences of two Ralstonia pseudosolanacearum strains, isolated from the warm northeast region of Brazil. They display divergent (compatible versus incompatible) interactions with the resistant tomato line Hawaii 7996. Polymorphisms were detected in a subset of effector genes that might be associated with these contrasting phenotypes.
Collapse
|
22
|
Prior AR, Gunaratnam C, Humphreys H. Ralstonia species - do these bacteria matter in cystic fibrosis? Paediatr Respir Rev 2017; 23:78-83. [PMID: 27856213 DOI: 10.1016/j.prrv.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
Ralstonia species, often regarded as an environmental organism of low pathogenicity, can cause significant disease in certain at-risk patient groups, including those with cystic fibrosis. Difficulties with its identification in the clinical laboratory mean that it may be misidentified and therefore under recognised as a cause of disease. A number of outbreaks have been associated with the use of devices for inhaled respiratory therapy, putting those with chronic respiratory conditions at risk. Antimicrobial treatment of infection is challenging and limited due to frequent antimicrobial resistance. This review highlights issues regarding the identification, treatment and prevention of infection due to Ralstonia spp. in children with cystic fibrosis.
Collapse
Affiliation(s)
- Anna-Rose Prior
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| | - Cedric Gunaratnam
- Department of Respiratory Medicine, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| |
Collapse
|
23
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Zhang Y, Bignell DRD, Zuo R, Fan Q, Huguet-Tapia JC, Ding Y, Loria R. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:640-50. [PMID: 27502745 DOI: 10.1094/mpmi-04-16-0068-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.
Collapse
Affiliation(s)
- Yucheng Zhang
- 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, U.S.A
| | - Dawn R D Bignell
- 2 Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ran Zuo
- 3 Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, U.S.A.; and
| | - Qiurong Fan
- 4 College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jose C Huguet-Tapia
- 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, U.S.A
| | - Yousong Ding
- 3 Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, U.S.A.; and
| | - Rosemary Loria
- 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
25
|
A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 2016; 39:252-259. [DOI: 10.1016/j.syapm.2016.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/07/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
|