1
|
Cervantes-Santos JA, Villar-Luna H, Bojórquez-Orozco AM, Díaz-Navarro JE, Arce-Leal ÁP, Santos-Cervantes ME, Claros MG, Méndez-Lozano J, Rodríguez-Negrete EA, Leyva-López NE. Huanglongbing as a Persistent Threat to Citriculture in Latin America. BIOLOGY 2025; 14:335. [PMID: 40282200 PMCID: PMC12025139 DOI: 10.3390/biology14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025]
Abstract
Citrus commercial species are the most important fruit crops in the world; however, their cultivation is seriously threatened by the fast dispersion of emerging diseases, including Huanglongbing (HLB) citrus greening. HLB disease is vectored by psyllid vectors and associated with phloem-limited α-proteobacteria belonging to the Candidatus Liberibacter genus. Climatic change and trade globalization have led to the rapid spread of HLB from its origin center in Southeast Asia, causing a great economic impact in the main production areas, including East Asia (China), the Mediterranean basin, North America (the United States), and Latin America (Brazil and Mexico). Despite important advances to understand the HLB epidemiology, Candidatus Liberibacter genetics, psyllid vector control, the molecular citrus-Candidatus Liberibacter interaction, and the development of integral disease management strategies, the study areas have been mostly restricted to high-tech-producing countries. Thus, in this review, we provide an overview of the epidemiology, distribution, genetic diversity, management aspects, and omics analysis of HLB in Latin America, where this information to date is limited.
Collapse
Affiliation(s)
- Jael Arely Cervantes-Santos
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Hernán Villar-Luna
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Ana Marlenne Bojórquez-Orozco
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - José Ernesto Díaz-Navarro
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Ángela Paulina Arce-Leal
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - María Elena Santos-Cervantes
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBAMA-RARE, 29010 Malaga, Spain
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Edgar Antonio Rodríguez-Negrete
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Norma Elena Leyva-López
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| |
Collapse
|
2
|
Zheng Y, Huang W, Josiah RT, Clemence T, Vernon SC, Enklebert T, Deng X, Zheng Z. Genomic Analysis of ' Candidatus Liberibacter africanus' Strain from Zimbabwe Reveals Unique Virulence and Prophage Characteristics Compared with ' Ca. L. asiaticus'. PLANT DISEASE 2025; 109:31-36. [PMID: 39146002 DOI: 10.1094/pdis-05-24-1141-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Citrus Huanglongbing (HLB) is caused by the phloem-limited α-proteobacterium 'Candidatus Liberibacter spp.', among which 'Ca. L. africanus' (CLaf) has posed a significant threat to citrus production in Africa for nearly a century. CLaf is closely related to the globally prevalent 'Ca. L. asiaticus' (CLas), whereas little is known about the virulence of CLaf, primarily because of limited genome resources. In this study, we completed the whole-genome assembly and annotation of the CLaf strain Zim (from Zimbabwe). Compared with CLas, a total of 102 CLaf unique genes were identified, including 14 potential Sec-dependent effector (SDE) genes, 29 phage-associated genes, and 59 genes with hypothetical function. Among 14 SDEs, V9J15_03810 was able to induce a significant hypersensitive response in Nicotiana benthamiana, indicating its potential as a virulence factor for CLaf. Genome analysis showed that the CLaf strain Zim genome harbored a complete prophage region (named P-Zim-1, 42,208 bp). P-Zim-1 retained two immunosuppressive peroxidase genes (V9J15_02125 and V9J15_02130) homologous to CLas prophage SC1/SC2, whereas the lysogen-associated genes encoding integrase (V9J15_01970) and repressor (V9J15_02080) were homologous to the prophage of 'Ca. L. solanacearum', the causal agent of potato zebra chip disease. In addition, P-Zim-1 carried a novel CRISPR/Cas system, including a CRISPR array (located within V9J15_02040, ranging from 443,643 to 443,897) and five CRISPR-related Cas proteins (V9J15_02005, V9J15_02010, V9J15_02015, V9J15_02025, and V9J15_02035). This study first characterized the unique genomic feature of CLaf related to virulence and prophage, which will facilitate future research on CLaf biology and African HLB management.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenxia Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | | | | | | | | | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Huang J, Alanís-Martínez I, Kumagai L, Dai Z, Zheng Z, Perez de Leon AA, Chen J, Deng X. Machine learning and analysis of genomic diversity of " Candidatus Liberibacter asiaticus" strains from 20 citrus production states in Mexico. FRONTIERS IN PLANT SCIENCE 2022; 13:1052680. [PMID: 36589083 PMCID: PMC9798433 DOI: 10.3389/fpls.2022.1052680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Huanglongbing (HLB, yellow shoot disease) is a highly destructive citrus disease associated with a nonculturable bacterium, "Candidatus Liberibacter asiaticus" (CLas), which is transmitted by Asian citrus psyllid (ACP, Diaphorina citri). In Mexico, HLB was first reported in Tizimin, Yucatán, in 2009 and is now endemic in 351 municipalities of 25 states. Understanding the population diversity of CLas is critical for HLB management. Current CLas diversity research is exclusively based on analysis of the bacterial genome, which composed two regions, chromosome (> 1,000 genes) and prophage (about 40 genes). METHODS AND RESULTS In this study, 40 CLas-infected ACP samples from 20 states in Mexico were collected. CLas was detected and confirmed by PCR assays. A prophage gene(terL)-based typing system (TTS) divided the Mexican CLas strains into two groups: Term-G including four strains from Yucatán and Chiapas, as well as strain psy62 from Florida, USA, and Term-A included all other 36 Mexican strains, as well as strain AHCA1 from California, USA. CLas diversity was further evaluated to include all chromosomal and prophage genes assisted by using machine learning (ML) tools to resolve multidimensional data handling issues. A Term-G strain (YTMX) and a Term-A strain (BCSMX) were sequenced and analyzed. The two Mexican genome sequences along with the CLas genome sequences available in GenBank were studied. An unsupervised ML was implemented through principal component analysis (PCA) on average nucleotide identities (ANIs) of CLas whole genome sequences; And a supervised ML was implemented through sparse partial least squares discriminant analysis (sPLS-DA) on single nucleotide polymorphisms (SNPs) of coding genes of CLas guided by the TTS. Two CLas Geno-groups, Geno-group 1 that extended Term-A and Geno-group 2 that extended Term-G, were established. CONCLUSIONS This study concluded that: 1) there were at least two different introductions of CLas into Mexico; 2) CLas strains between Mexico and USA are closely related; and 3) The two Geno-groups provide the basis for future CLas subspecies research.
Collapse
Affiliation(s)
- Jiaquan Huang
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
| | - Iobana Alanís-Martínez
- National Station of Plant Epidemiology, Quarantine and Sanitation, SENASICA, Queretaro, Mexico
| | - Lucita Kumagai
- Plant Pest Diagnostic Center, California Department of Food and Agriculture, Sacramento, CA, United States
| | - Zehan Dai
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Adalberto A. Perez de Leon
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquín Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Jianchi Chen
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquín Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Xiaoling Deng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
da Graça JV, Cook G, Ajene IJ, Grout TG, Pietersen G, Roberts R, Bester R, Pretorius MC, Maree HJ. A Review of the ' Candidatus Liberibacter africanus' Citrus Pathosystem in Africa. PHYTOPATHOLOGY 2022; 112:44-54. [PMID: 34503351 DOI: 10.1094/phyto-07-21-0296-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been nearly 100 years since citrus growers in two distinct regions in the northern provinces of South Africa noticed unusual symptoms in their citrus trees, causing significant crop losses. They had no idea that these symptoms would later become part of an almost global pandemic of a disease called greening or huanglongbing (HLB). The rapid spread of the disease indicated that it might be caused by a transmissible pathogen, but it took >50 years to identify the causative agent as 'Candidatus Liberibacter africanus'. Recently, the disease appeared in more African countries, spreading by both infected planting material and Trioza erytreae. To date, five 'Ca. L. africanus' subspecies have been identified in various rutaceous species, with 'Ca. L. africanus subsp. clausenae' the only subspecies for which a biovar was detected in citrus. Efforts to detect and differentiate HLB-causing Liberibacter species are ongoing, and recent developments are discussed here. This review focuses on aspects of the African form of HLB, including its specific bacterial species and subspecies, its main insect vector, its geographic distribution, and current management strategies.
Collapse
Affiliation(s)
- John V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX, U.S.A
| | - Glynnis Cook
- Citrus Research International, Mbombela, South Africa
| | - Inusa J Ajene
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Tim G Grout
- Citrus Research International, Mbombela, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Ronel Roberts
- Agricultural Research Council, Tropical and Subtropical Crops, Mbombela, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Stellenbosch, South Africa
| | | | - Hans J Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Stellenbosch, South Africa
| |
Collapse
|
5
|
Ding F, Peng SA, Hartung JS. Enhanced Serologically Based Detection of Liberibacters Associated with Citrus Huanglongbing. PLANT DISEASE 2020; 104:1584-1588. [PMID: 32357120 DOI: 10.1094/pdis-12-19-2679-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
'Candidatus Liberibacter spp.' are associated with the most devastating disease of citrus Huanglongbing (HLB). In previous work, we established an in situ tissue print method for the detection of 'Ca. L. asiaticus' (CLas) in sweet orange. We optimized the protocol by preincubation of the anti-Omp antibody with 5% (w/v) extract of healthy rough lemon. This simple process eliminated cross reactions between citrus and the antibody. The optimized protocol enhanced the application of the polyclonal antibody, and we demonstrate detection of CLas from all parts of the world, including isolates from Japan, Thailand, Vietnam, Pakistan, Saudi Arabia, Brazil, the United States, and a selection of strains from China representative of the diversity extant there. The assay also was used to detect four isolates of 'Ca. L. africanus' (CLaf) representative of the diversity present in South Africa. The corresponding outer membrane genes of representative isolates were cloned and sequenced. The coding sequences were highly conserved, and isolates of CLas and CLaf shared 53.8 to 55.9% identity between species at the amino acid level. The optimized protocol is efficient for recognition of both CLas and CLaf in phloem cells of different citrus tissues regardless of geographic origin of the HLB samples. The method is simple and scales well to match the urgent need for accurate, sensitive, and high-throughput screening of HLB bacteria, and may play an important role especially for plant inspection and quarantine programs.
Collapse
Affiliation(s)
- Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 P.R. China
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070 P.R. China
- United States Department of Agriculture, Agricultural Research Service Molecular Plant Pathology Laboratory, Beltsville, MD 20705, U.S.A
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070 P.R. China
| | - John S Hartung
- United States Department of Agriculture, Agricultural Research Service Molecular Plant Pathology Laboratory, Beltsville, MD 20705, U.S.A
| |
Collapse
|
6
|
Ajene IJ, Khamis FM, van Asch B, Pietersen G, Seid N, Rwomushana I, Ombura FLO, Momanyi G, Finyange P, Rasowo BA, Tanga CM, Mohammed S, Ekesi S. Distribution of Candidatus Liberibacter species in Eastern Africa, and the First Report of Candidatus Liberibacter asiaticus in Kenya. Sci Rep 2020; 10:3919. [PMID: 32127552 PMCID: PMC7054587 DOI: 10.1038/s41598-020-60712-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
Huanglongbing (HLB) is a serious disease of Citrus sp. worldwide. In Africa and the Mascarene Islands, a similar disease is known as African citrus greening (ACG) and is associated with the bacterium Candidatus Liberibacter africanus (Laf). In recent years, Candidatus Liberibacter asiaticus (Las) associated with the severe HLB has been reported in Ethiopia. Thus, we aimed to identify the Liberibacter species affecting citrus, the associated vectors in Eastern Africa and their ecological distribution. We assessed the presence of generic Liberibacter in symptomatic leaf samples by quantitative PCR. Subsequently, we sequenced the 50 S ribosomal protein L10 (rplJ) gene region in samples positive for Liberibacters and identified the species by comparison with public sequence data using phylogenetic reconstruction and genetic distances. We detected generic Liberibacter in 26%, 21% and 66% of plants tested from Uganda, Ethiopia and Kenya, respectively. The rplJ sequences revealed the most prevalent Liberibacters in Uganda and Ethiopia were LafCl (22%) and Las (17%), respectively. We detected Las in Kenya for the first time from three sites in the coastal region. Finally, we modelled the potential habitat suitability of Las in Eastern Africa using MaxEnt. The projection showed large areas of suitability for the pathogen in the three countries surveyed. Moreover, the potential distribution in Eastern Africa covered important citrus-producing parts of Ethiopia, Kenya, Uganda and Tanzania, and included regions where the disease has not been reported. These findings will guide in the development of an integrated pest management strategy to ACG/HLB management in Africa.
Collapse
Affiliation(s)
- Inusa J Ajene
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Department of Crop Protection, Faculty of Agriculture Ahmadu Bello University, Zaria, Nigeria
| | - Fathiya M Khamis
- International Center of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | | - Pole Finyange
- Kenya Agricultural and Livestock Research Organization, Matuga, Kenya
| | - Brenda A Rasowo
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Samira Mohammed
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Sunday Ekesi
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
7
|
Rasowo BA, Khamis FM, Mohamed SA, Ajene IJ, Aidoo OF, Ombura L, Sétamou M, Ekesi S, Borgemeister C. African Citrus Greening Disease in East Africa: Incidence, Severity, and Distribution Patterns. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2389-2397. [PMID: 31219591 DOI: 10.1093/jee/toz167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/09/2023]
Abstract
African citrus greening disease (ACGD) is considered as one of the major diseases of citrus threatening citrus production in East Africa. Our study aimed for the first time to assess the incidence, severity, and distribution patterns of ACGD in Kenya and Tanzania. In total, 105 citrus orchards were assessed in 13 regions representing low, mid, and high altitude areas. In each backyard and orchard, trees were randomly selected and rated for visual ACGD symptoms; then leaves and insect samples collected for analysis of 'Candidatus Liberibacter africanus' (CLaf), the presumptive causal agent of ACGD. Endpoint PCR, sequencing, and molecular phylogenetic tools were employed to confirm the identity of potential circulating pathogens. Incidence and severity of ACGD varied significantly among the different regions. Both Trioza erytreae (Del Guerico) (Hemiptera: Triozidae) and the invasive Asian citrus psyllid vector Diaphorina citri (Kuwayama) (Hemiptera: Liviidae) were found to co-occur in upper and lower midland regions. Molecular characterization identified 'Candidatus Liberibacter africanus spp. Clausenae' (CLafCl) as the main causal agent of ACGD in most of the citrus plants and insect samples. No instances of Candidatus Liberibacter asiaticus infection were found. These findings provide valuable insights into understanding and management of ACGD by employing stringent and early disease detection tools to curb the spread of the disease.
Collapse
Affiliation(s)
- B A Rasowo
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - F M Khamis
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
| | - S A Mohamed
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
| | - I J Ajene
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
| | - O F Aidoo
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - L Ombura
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
| | - M Sétamou
- Texas A&M University, Kingsville Citrus Centre, Weslaco, TX
| | - S Ekesi
- International Centre of Insect Physiology and Ecology (icipe), GPO, Nairobi, Kenya
| | - C Borgemeister
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT, Martins J. The Candidatus Liberibacter-Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637377 DOI: 10.1146/annurev-phyto-080516-035513] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
"Candidatus Liberibacter" species are associated with economically devastating diseases of citrus, potato, and many other crops. The importance of these diseases as well as the proliferation of new diseases on a wider host range is likely to increase as the insects vectoring the "Ca. Liberibacter" species expand their territories worldwide. Here, we review the progress on understanding pathogenesis mechanisms of "Ca. Liberibacter" species and the control approaches for diseases they cause. We discuss the Liberibacter virulence traits, including secretion systems, putative effectors, and lipopolysaccharides (LPSs), as well as other important traits likely to contribute to disease development, e.g., flagella, prophages, and salicylic acid hydroxylase. The pathogenesis mechanisms of Liberibacters are discussed. Liberibacters secrete Sec-dependent effectors (SDEs) or other virulence factors into the phloem elements or companion cells to interfere with host targets (e.g., proteins or genes), which cause cell death, necrosis, or other phenotypes of phloem elements or companion cells, leading to localized cell responses and systemic malfunction of phloem. Receptors on the remaining organelles in the phloem, such as plastid, vacuole, mitochondrion, or endoplasmic reticulum, interact with secreted SDEs and/or other virulence factors secreted or located on the Liberibacter outer membrane to trigger cell responses. Some of the host genes or proteins targeted by SDEs or other virulence factors of Liberibacters serve as susceptibility genes that facilitate compatibility (e.g., promoting pathogen growth or suppressing immune responses) or disease development. In addition, Liberibacters trigger plant immunity response via pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharides), which leads to premature cell death, callose deposition, or phloem protein accumulation, causing a localized response and/or systemic effect on phloem transportation. Physical presence of Liberibacters and their metabolic activities may disturb the function of phloem, via disrupting osmotic gradients, or the integrity of phloem conductivity. We also review disease management strategies, including promising new technologies. Citrus production in the presence of Huanglongbing is possible if the most promising management approaches are integrated. HLB management is discussed in the context of local, area-wide, and regional Huanglongbing/Asian Citrus Psyllid epidemiological zones. For zebra chip disease control, aggressive psyllid management enables potato production, although insecticide resistance is becoming an issue. Meanwhile, new technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-derived genome editing provide an unprecedented opportunity to provide long-term solutions.
Collapse
Affiliation(s)
- Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Luiz Thiberio Rangel
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
9
|
Roberts R, Cook G, Grout TG, Khamis F, Rwomushana I, Nderitu PW, Seguni Z, Materu CL, Steyn C, Pietersen G, Ekesi S, le Roux HF. Resolution of the Identity of 'Candidatus Liberibacter' Species From Huanglongbing-Affected Citrus in East Africa. PLANT DISEASE 2017; 101:1481-1488. [PMID: 30678595 DOI: 10.1094/pdis-11-16-1655-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter asiaticus', the bacterium associated with citrus Huanglongbing (HLB), was reported from Uganda and tentatively from Tanzania, posing a threat to citriculture in Africa. Two surveys of citrus expressing typical HLB symptoms were conducted in Uganda, Kenya, and Tanzania to verify reports of 'Ca. L. asiaticus' and to assess the overall threat of HLB to eastern and southern African citrus production. Samples were analyzed for the presence of 'Candidatus Liberibacter' species by real-time PCR and partial sequencing of three housekeeping genes, 16S rDNA, rplJ, and omp. 'Ca. L. africanus', the bacterium historically associated with HLB symptoms in Africa, was detected in several samples. However, samples positive in real-time PCR for 'Ca. L. asiaticus' were shown not to contain 'Ca. L. asiaticus' by sequencing. Sequences obtained from these samples were analogous to 'Ca. L. africanus subsp. clausenae', identified from an indigenous Rutaceae species in South Africa, and not to 'Ca. L. asiaticus'. Results indicate a nontarget amplification of the real-time assay and suggest that previous reports of 'Ca. L. asiaticus' from Uganda and Tanzania may be mis-identifications of 'Ca. L. africanus subsp. clausenae'. This subspecies was additionally detected in individual Diaphorina citri and Trioza erytreae specimens recovered from collection sites. This is the first report of 'Ca. L. africanus subsp. clausenae' infecting citrus and being associated with HLB symptoms in this host.
Collapse
Affiliation(s)
- Ronel Roberts
- Plant Microbiology Division, Agricultural Research Council-Plant Protection Research, Pretoria 0001, South Africa
| | - Glynnis Cook
- Citrus Research International, Nelspruit 1200, South Africa
| | - Tim G Grout
- Citrus Research International, Nelspruit 1200, South Africa
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Ivan Rwomushana
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Zuberi Seguni
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | | | - Chanel Steyn
- Citrus Research International, Nelspruit 1200, South Africa
| | - Gerhard Pietersen
- Plant Microbiology Division, Agricultural Research Council-Plant Protection Research, Pretoria 0001, South Africa
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | |
Collapse
|