1
|
Ben Tekaya S, Nouioui I, Flores GM, Neumann-Schaal M, Bredoire F, Basile F, van Diepen LTA, Ward NL. Geodermatophilus maliterrae sp. nov., a member of the Geodermatophilaceae isolated from badland surfaces in the Red Desert, Wyoming, USA. Int J Syst Evol Microbiol 2024; 74. [PMID: 39671238 DOI: 10.1099/ijsem.0.006603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
A novel Gram-stain-positive, black-pigmented bacterium, designated as WL48A T, was isolated from the surface of badland sedimentary rock in the Red Desert of Wyoming and characterized using a polyphasic taxonomic approach. Good growth occurred at 28-32 °C, pH 7-9, and NaCl less than 1% (w/v). Colonies, growing well on International Streptomyces Project media (ISP) 3 and ISP 7, were black and adhering to the agar. Phylogenetic analyses based on 16S rRNA gene and draft genome sequences showed that strain WL48AT belongs to the family Geodermatophilaceae, forming a distinct sub-branch with Geodermatophilus bullaregiensis DSM 46841T. The organism showed 16S rRNA gene sequence similarity of 98.8% with G. bullaregiensis DSM 46841T. Digital DNA-DNA hybridization value between the genome sequences of strain WL48A T and G. bullaregiensis DSM 46841T was 51.8%, below the threshold of 70% for prokaryotic species delineation. The chemotaxonomic investigation revealed the presence of galactose, glucose, mannose, xylose and ribose as well as meso-DAP in the peptidoglycan layer. The polar lipid profiles contained phosphatidylcholine (PC), phosphatidylinositol (PI), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE) phosphoglycolipid, phospholipids and an unidentified lipid. The menaquinone profile consisted of MK-9(H4) (98.2%) and MK-9(H2) (10.8%). The major fatty acid profile (>15%) comprised iso-C15 : 0 and iso-C16 : 0. Based on phenotypic, genetic and genomic data, strain WL48AT (=DSM 116197T = NCIMB 15483T=NCCB 100957T =ATCC TSD-376T) merits to be considered as a novel species for which the name Geodermatophilus maliterrae sp. nov. is proposed.
Collapse
Affiliation(s)
- Seifeddine Ben Tekaya
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Imen Nouioui
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Berlin, Germany
| | - Gabryelle May Flores
- Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Meina Neumann-Schaal
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Berlin, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Felix Bredoire
- Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Linda T A van Diepen
- Department of Ecosystem Science & Management, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Naomi L Ward
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| |
Collapse
|
2
|
Li MS. Replacement of the illegitimate name Pleomorpha daqingensis (Wang et al. 2017) Montero-Calasanz et al. 2023 with the oldest legitimate name Geodermatophilus daqingensis Wang et al. 2017 and proposal to attribute this species to Petropleomorpha daqingensis (Wang et al. 2017) Li 2023 comb. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37823786 DOI: 10.1099/ijsem.0.006079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
The prokaryotic generic name Pleomorpha Montero-Calasanz et al. 2023 should be considered illegitimate for being a later homonym of the insect generic name Pleomorpha Saunders 1847, which contravenes Principle 2 and Rule 51b(5) of the 2022 Prokaryotic Code. The name Pleomorpha daqingensis Montero-Calasanz et al. 2023 is therefore illegitimate, and a proposal of a replacement name must be made. The author herein proposes to replace it with the oldest legitimate name Geodermatophilus daqingensis Wang et al. 2017 as requested by Rule 54 and then to attribute this species to the new combination Petropleomorpha daqingensis (Wang et al. 2017) Li 2023 comb. nov.
Collapse
Affiliation(s)
- Meng-Syun Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
3
|
Ren X, Whitton MM, Yu SJ, Trotter T, Bajagai YS, Stanley D. Application of Phytogenic Liquid Supplementation in Soil Microbiome Restoration in Queensland Pasture Dieback. Microorganisms 2023; 11:microorganisms11030561. [PMID: 36985135 PMCID: PMC10054416 DOI: 10.3390/microorganisms11030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pasture production is vital in cattle farming as it provides animals with food and nutrients. Australia, as a significant global beef producer, has been experiencing pasture dieback, a syndrome of deteriorating grassland that results in the loss of grass and the expansion of weeds. Despite two decades of research and many remediation attempts, there has yet to be a breakthrough in understanding the causes or mechanisms involved. Suggested causes of this phenomenon include soil and plant microbial pathogens, insect infestation, extreme heat stress, radiation, and others. Plants produce a range of phytomolecules with antifungal, antibacterial, antiviral, growth-promoting, and immunostimulant effects to protect themselves from a range of environmental stresses. These products are currently used more in human and veterinary health than in agronomy. In this study, we applied a phytogenic product containing citric acid, carvacrol, and cinnamaldehyde, to investigate its ability to alleviate pasture dieback. The phytogenic liquid-based solution was sprayed twice, one week apart, at 5.4 L per hectare. The soil microbial community was investigated longitudinally to determine long-term effects, and pasture productivity and plant morphometric improvements were explored. The phytogenic liquid significantly improved post-drought recovery of alpha diversity and altered temporal and spatial change in the community. The phytogenic liquid reduced biomarker genera associated with poor and polluted soils and significantly promoted plant and soil beneficial bacteria associated with plant rhizosphere and a range of soil benefits. Phytogenic liquid application produced plant morphology improvements and a consistent enhancement of pasture productivity extending beyond 18 months post-application. Our data show that phytogenic products used in the livestock market as an alternative to antibiotics may also have a beneficial role in agriculture, especially in the light of climate change-related soil maintenance and remediation.
Collapse
|
4
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Corrigendum: Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2023; 13:1100319. [PMID: 36741890 PMCID: PMC9897311 DOI: 10.3389/fmicb.2022.1100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/22/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2022.975365.].
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,*Correspondence: Maria del Carmen Montero-Calasanz ✉
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
5
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
6
|
Oren A, Garrity GM. List of novel names and novel combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:2075-2078. [DOI: 10.1099/ijsem.0.002122] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|