1
|
Li Y, Zhang D, Bo D, Peng D, Sun M, Zheng J. A taxonomic note on the order Caryophanales: description of 12 novel families and emended description of 21 families. Int J Syst Evol Microbiol 2024; 74. [PMID: 39556488 DOI: 10.1099/ijsem.0.006539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
The order Caryophanales, belonging to class Bacilli, is globally distributed in various ecosystems. Currently, this order comprised 12 families that show vast phenotypic, ecological and genotypic variation. The classification of Caryophanales at the family level is currently mainly based on 16S rRNA gene sequencing analysis and the presence of shared phenotypic characteristics, resulting in noticeable anomalies. Our present study revises the taxonomy of Caryophanales based on 1080 available high-quality genome sequences of type strains. The evaluated parameters included the core-genome phylogeny, pairwise average aa identity, lineage-specific core genes, physiological criteria and ecological parameters. Based on the results of this polyphasic approach, we propose that the order Caryophanales be reclassified into 41 families, which include the existing 12 families, 17 families in a recent Validation List in the IJSEM (Validation List no. 215) and 12 novel families for which we propose the names Aureibacillaceae, Cytobacillaceae, Domibacillaceae, Falsibacillaceae, Heyndrickxiaceae, Lottiidibacillaceae, Oxalophagaceae, Pradoshiaceae, Rossellomoreaceae, Schinkiaceae, Sulfoacidibacillaceae and Sutcliffiellaceae. This work represents a genomic sequence-based and systematic framework for classifying the order Caryophanales at the family level, providing new insights into its evolution.
Collapse
Affiliation(s)
- Yangjie Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dechao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dexin Bo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
2
|
Dabuo FT, Du J, Madzikanda B, Coulibaly PT. Influence of research and development, environmental regulation, and consumption of energy on CO 2 emissions in China-novel spatial Durbin model perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29065-29085. [PMID: 36401702 DOI: 10.1007/s11356-022-23647-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Global warming continues to be an intimidating factor for environmental protection, and reducing carbon emissions is an effective way to deal with the phenomenon. However, the energy sector is a significant contributor to greenhouse gas emissions. Therefore, investment in environmental regulations and research and development (R&D), is critical for fostering a low-carbon growth model. This study focuses on 30 provinces in China from 2004 to 2019. We used the spatial Durbin model to investigate how the spatial spillover effect of R&D and environmental regulation impacts carbon emissions. In addition, we applied the dynamic threshold panel model to mitigate potential problems of endogeneity. The results reveal that carbon emissions have a considerable spatial correlation in both temporal and spatial dimensions, exhibiting high and low-value accumulation characteristics. Furthermore, the combined effect of R&D intensity, environmental regulation, and energy consumption were found to contribute to the increase in carbon emissions across China's provinces, and they also suggest different influencing mechanisms. The spillover effects of increased carbon emissions in neighboring regions also contribute to the increase in local carbon emissions. The study also found that R&D and stringent environmental regulations measures strongly moderate the link between energy consumption and carbon emissions. In promoting carbon reduction, by breaking the dynamic equilibrium in China, the provincial investment outflow on R&D intensity could be optimized, and the regional levels should focus more on tightening environmental regulatory measures and promoting the development of energy-conserving technologies.
Collapse
Affiliation(s)
- Francis Tang Dabuo
- School of Management, Jiangsu University, 301 Xuefu Road, Jingkou, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Jianguo Du
- School of Management, Jiangsu University, 301 Xuefu Road, Jingkou, Zhenjiang, Jiangsu, 212013, People's Republic of China.
| | - Beverlley Madzikanda
- School of Management, Jiangsu University, 301 Xuefu Road, Jingkou, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Pierrette Tiefigue Coulibaly
- School of Management, Jiangsu University, 301 Xuefu Road, Jingkou, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
3
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
4
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2021; 71. [PMID: 34850678 DOI: 10.1099/ijsem.0.005096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|