1
|
Xie F, Zhang G, Zheng Q, Liu K, Yin X, Sun X, Saud S, Shi Z, Yuan R, Deng W, Zhang L, Cui G, Chen Y. Beneficial Effects of Mixing Kentucky Bluegrass With Red Fescue via Plant-Soil Interactions in Black Soil of Northeast China. Front Microbiol 2020; 11:556118. [PMID: 33193137 PMCID: PMC7656059 DOI: 10.3389/fmicb.2020.556118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Continuous monoculture of cool-season turfgrass causes soil degradation, and visual turf quality decline is a major concern in black soil regions of Northeast China. Turf mixtures can enhance turfgrass resistance to biotic and abiotic stresses and increase soil microbial diversity. Understanding mechanism by plant-soil interactions and changes of black soil microbial communities in turf mixture is beneficial to restoring the degradation of urbanized black soils and maintaining sustainable development of urban landscape ecology. In this study, based on the previous research of different sowing models, two schemes of turf monoculture and mixture were conducted in field plots during 2016-2018 in a black soil of Heilongjiang province of Northeast China. The mixture turf was established by mixing 50% Kentucky bluegrass "Midnight" (Poa pratensis L.) with 50% Red fescue "Frigg" (Festuca rubra L.); and the monoculture turf was established by sowing with pure Kentucky bluegrass. Turf performance, soil physiochemical properties, and microbial composition from rhizosphere were investigated. Soil microbial communities and abundance were analyzed by Illumina MiSeq sequencing and quantitative PCR methods. Results showed that turfgrass quality, turfgrass biomass, soil organic matter (SOM), urease, alkaline phosphatase, invertase, and catalase activities increased in PF mixture, but disease percentage and soil pH decreased. The microbial diversity was also significantly enhanced under turf mixture model. The microbial community compositions were significantly different between the two schemes. Turf mixtures obviously increased the abundances of Beauveria, Lysobacter, Chryseolinea, and Gemmatimonas spp., while remarkably reduced the abundances of Myrothecium and Epicoccum spp. Redundancy analysis showed that the compositions of bacteria and fungi were related to edaphic parameters, such as SOM, pH, and enzyme activities. Since the increasing of turf quality, biomass, and disease resistance were highly correlated with the changes of soil physiochemical parameters and microbial communities in turf mixture, which suggested that turf mixture with two species (i.e., Kentucky blue grass and Red fescue) changed soil microbial communities and enhanced visual turfgrass qualities through positive plant-soil interactions by soil biota.
Collapse
Affiliation(s)
- Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Gaoyun Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qianjiao Zheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kemeng Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.,Beijing Oriental Garden Environment Co., Ltd, Beijing, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaoyang Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shah Saud
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Runli Yuan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenjing Deng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Abstract
Microbial diversity has been well documented for the top 0–0.30 m of agricultural soils. However, spatio-temporal research into subsoil microbial diversity and the effects of agricultural management remains limited. Soil type may influence subsoil microbial diversity, particularly Vertosols. These soils lack distinct horizons and are known to facilitate the downward movement of organic matter, potentially supporting subsoil microbiota, removed from the crop root system (i.e., bulk soils). Our research used the MiSeq Illumina Platform to investigate microbial diversity down the profile of an agricultural Australian Vertosol to 1.0 m in bulk soils, as influenced by crop system (continuous cotton and cotton–maize) and sample time (pre- and in-crop samples collected over two seasons). Overall, both alpha- (Chao1, Gini–Simpson Diversity and Evenness indices) and beta-diversity (nMDS and Sørensen’s Index of Similarity) metrics indicated that both bacterial (16S) diversity and fungal (ITS) diversity decreased with increasing soil depth. The addition of a maize rotation did not significantly influence alpha-diversity metrics until 0.70–1.0 m depth in the soil, where bacterial diversity was significantly higher in this system, with beta-diversity measures indicating this is likely due to root system differences influencing dissolved organic carbon. Sample time did not significantly affect bacterial or fungal diversity over the two seasons, regardless of the crop type and status (i.e., crop in ground and post crop). The relatively stable subsoil fungal and overall microbial diversity in bulk soils over two crop seasons suggests that these microbiota have developed a tolerance to prolonged agricultural management.
Collapse
|
3
|
Richardson MD, Rautemaa-Richardson R. Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes. J Fungi (Basel) 2019; 6:jof6010004. [PMID: 31861785 PMCID: PMC7151039 DOI: 10.3390/jof6010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Clinically relevant members of the Mucorales group can grow and are found in diverse ecological spaces such as soil, dust, water, decomposing vegetation, on and in food, and in hospital environments but are poorly represented in mycobiome studies of outdoor and indoor air. Occasionally, Mucorales are found in water-damaged buildings. This mini review examines a number of specialised biotic environments, including those revealed by natural disasters and theatres of war, that support the growth and persistence of these fungi. However, we are no further forward in understanding exposure pathways or the chronicity of exposure that results in the spectrum of clinical presentations of mucormycosis.
Collapse
Affiliation(s)
- Malcolm D. Richardson
- Mycology Reference Centre Manchester, ECMM Excellence Centre, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK;
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
- Correspondence:
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, ECMM Excellence Centre, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK;
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
- Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| |
Collapse
|