1
|
de Oliveira Sant'Anna L, Dos Santos LS, Araújo MRB, da Rocha DJPG, Ramos JN, Baio PVP, Del Peloso PF, da Costa Ferreira Leite C, Peixoto RS, Almuzara M, Vay C, Barberis C, Sangal V, Burkovski A, Aguiar ERGR, Mattos-Guaraldi AL, Pacheco LGC, Vieira VV. Corynebacterium guaraldiae sp. nov.: a new species of Corynebacterium from human infections. Braz J Microbiol 2023; 54:779-790. [PMID: 36869213 PMCID: PMC10235285 DOI: 10.1007/s42770-023-00938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Non-diphtheria Corynebacterium species (NDC) belonging to the human skin and mucosa microbiota are frequently neglected as contaminants. However, reports of human infections by Corynebacterium spp. have increased considerably in recent years. In this study, a group of six NDC isolates of urine (n = 5) and sebaceous cyst (n = 1) from two South American countries were identified at genus level or misidentified based on API® Coryne and genetic/molecular analyses. The 16S rRNA (99.09-99.56%) and rpoB (96.18-97.14%) gene sequence similarities of the isolates were higher when compared with Corynebacterium aurimucosum DSM 44532 T. Multilocus sequence analysis (MLSA) indicated that these six NDC isolates compose a distinctive phylogenetic clade. Genome-based taxonomic analysis with the whole-genome sequences was able to separate these six isolates from other known Corynebacterium type strains. Average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between closely related type strains and the six isolates were considerably lower than the currently recommended threshold values for species circumscription. Phylogenetic and genomic taxonomy analyses indicated these microorganisms as a novel Corynebacterium species, for which we formally propose the name Corynebacterium guaraldiae sp. nov. with isolate 13T (= CBAS 827T = CCBH 35012T) as type strain.
Collapse
Affiliation(s)
- Lincoln de Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Marisa Almuzara
- Faculty of Pharmacy and Biochemistry and Bacteriology, Department of Clinical Biochemistry, University of Buenos Aires, Autonomous City of Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vay
- Faculty of Pharmacy and Biochemistry and Bacteriology, Department of Clinical Biochemistry, University of Buenos Aires, Autonomous City of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Barberis
- Faculty of Pharmacy and Biochemistry and Bacteriology, Department of Clinical Biochemistry, University of Buenos Aires, Autonomous City of Buenos Aires, Buenos Aires, Argentina
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Andreas Burkovski
- Professur Fuer Mikrobiologie, Friedrich-Alexander-Universität Erlagen-Nürnberg, Erlangen, Germany
| | - Eric Roberto Guimarães Rocha Aguiar
- Virus Bioinformatics Laboratory, Center of Biotechnology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO. Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. Microorganisms 2022; 10:microorganisms10020249. [PMID: 35208706 PMCID: PMC8878833 DOI: 10.3390/microorganisms10020249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
The vaginal microbiome of healthy women contains nondiphtheria corynebacteria. The role and functions of nondiphtheria corynebacteria in the vaginal biotope are still under study. We sequenced and analysed the genomes of three vaginal C. amycolatum strains isolated from healthy women. Previous studies have shown that these strains produced metabolites that significantly increased the antagonistic activity of peroxide-producing lactic acid bacteria against pathogenic and opportunistic microorganisms and had strong antimicrobial activity against opportunistic pathogens. Analysis of the C. amycolatum genomes revealed the genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genes responsible for the production of H2O2 and the synthesis of secondary metabolites, essential amino acids and vitamins were identified. A cluster of genes encoding the synthesis of bacteriocin was revealed in one of the annotated genomes. The obtained results allow us to consider the studied strains as potential probiotics that are capable of preventing the growth of pathogenic microorganisms and supporting colonisation resistance in the vaginal biotope.
Collapse
|
3
|
Dover LG, Thompson AR, Sutcliffe IC, Sangal V. Phylogenomic Reappraisal of Fatty Acid Biosynthesis, Mycolic Acid Biosynthesis and Clinical Relevance Among Members of the Genus Corynebacterium. Front Microbiol 2021; 12:802532. [PMID: 35003033 PMCID: PMC8733736 DOI: 10.3389/fmicb.2021.802532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The genus Corynebacterium encompasses many species of biotechnological, medical or veterinary significance. An important characteristic of this genus is the presence of mycolic acids in their cell envelopes, which form the basis of a protective outer membrane (mycomembrane). Mycolic acids in the cell envelope of Mycobacterium tuberculosis have been associated with virulence. In this study, we have analysed the genomes of 140 corynebacterial strains, including representatives of 126 different species. More than 50% of these strains were isolated from clinical material from humans or animals, highlighting the true scale of pathogenic potential within the genus. Phylogenomically, these species are very diverse and have been organised into 19 groups and 30 singleton strains. We find that a substantial number of corynebacteria lack FAS-I, i.e., have no capability for de novo fatty acid biosynthesis and must obtain fatty acids from their habitat; this appears to explain the well-known lipophilic phenotype of some species. In most species, key genes associated with the condensation and maturation of mycolic acids are present, consistent with the reports of mycolic acids in their species descriptions. Conversely, species reported to lack mycolic acids lacked these key genes. Interestingly, Corynebacterium ciconiae, which is reported to lack mycolic acids, appears to possess all genes required for mycolic acid biosynthesis. We suggest that although a mycolic acid-based mycomembrane is widely considered to be the target for interventions by the immune system and chemotherapeutics, the structure is not essential in corynebacteria and is not a prerequisite for pathogenicity or colonisation of animal hosts.
Collapse
|
4
|
Zhang G, Yang J, Lai XH, Jin D, Lu S, Ren Z, Qin T, Pu J, Ge Y, Cheng Y, Yang C, Lv X, Jiao Y, Huang Y, Xu J. Corynebacterium zhongnanshanii sp. nov. isolated from trachea of Marmota himalayana, Corynebacterium lujinxingii sp. nov. and Corynebacterium wankanglinii sp. nov. from human faeces. Int J Syst Evol Microbiol 2021; 71. [PMID: 34846289 DOI: 10.1099/ijsem.0.005069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320T/zg-336, zg-917T/zg-910 and zg-913T/zg-915) isolated from animal tissues and human faeces were found to belong to the genus Corynebacterium based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320T/zg-336 had the highest 16S rRNA gene similarity to Corynebacterium falsenii DSM 44353T (97.51 %), zg-917T/zg-910 to Corynebacterium coyleae DSM 44184T (98.68 %), and zg-913T/zg-915 to Corynebacterium afermentans subsp. lipophilum CIP 103500T (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2-64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320T vs. Corynebacterium auriscanis CIP 106629T, Corynebacterium resistens DSM 45100T and Corynebacterium suicordis DSM 45110T); 24.4/82.3% and 23.7/81.3 % (zg-917T vs. C. coyleae DSM 44184T and Corynebacterium jeddahense JCBT); 26.8/83.7% and 27.7/84.4 % (zg-913T vs. Corynebacterium mucifaciens ATCC 700355T and C. afermentans subsp. lipophilum CCUG 32105T). The three novel species had C16 : 0, C18 : 0, C18 : 1 ω9c and C18 : 0 ante/C18 : 2 ω6,9c as the major cellular fatty acids; MK-8(H2) in strain zg-917T and MK-9(H2) in strains zg-320T and zg-913T were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on meso-DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35-37 °C, 0.5 % (w/v) NaCl and pH 7.0-8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus Corynebacterium are proposed, aptly named Corynebacterium zhongnanshanii sp. nov. (zg-320T = GDMCC 1.1719T = JCM 34106T), Corynebacterium lujinxingii sp. nov. (zg-917T = GDMCC 1.1707T = JCM 34094T) and Corynebacterium wankanglinii sp. nov. (zg-913T = GDMCC 1.1706T = JCM 34398T).
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Tian Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yajun Ge
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Caixin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xianglian Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yifan Jiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China.,Institute of Public Health, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
5
|
Ben Khedher M, Lo C, Diop K, Morand A, Armstrong N, Raoult D, Fenollar F. Taxonogenomics description of Arcanobacterium urinimassiliense sp. nov., a new bacterial species isolated from urine sample. New Microbes New Infect 2021; 41:100854. [PMID: 33854785 PMCID: PMC8027287 DOI: 10.1016/j.nmni.2021.100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Strain Marseille-P3248т is a new species from the order Actinomycetales that was isolated from the urine sample of a girl aged 20 months with rotavirus gastroenteritis. It is a facultative anaerobic Gram-positive rod-shaped bacterium. Strain Marseille-P3248т exhibits 94.73% sequence similarity with Arcanobacterium pluranimalium strain M430/94/2, a phylogenetically related species with standing in nomenclature. Its genome size is 1 667 964 bp with 49.1% G + C content. Strain Marseille-P3248т (= CSURP3248) is the type strain of the new species Arcanobacterium urinimassiliense sp. nov.
Collapse
Affiliation(s)
- M. Ben Khedher
- Aix Marseille Université, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - C.I. Lo
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - K. Diop
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - A. Morand
- Aix Marseille Université, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - N. Armstrong
- Aix Marseille Université, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - D. Raoult
- Aix Marseille Université, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - F. Fenollar
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
6
|
Munson E, Carroll KC. Summary of Novel Bacterial Isolates Derived from Human Clinical Specimens and Nomenclature Revisions Published in 2018 and 2019. J Clin Microbiol 2021; 59:e01309-20. [PMID: 32967902 PMCID: PMC8111135 DOI: 10.1128/jcm.01309-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of novel prokaryotic taxon discovery and nomenclature revisions is of importance to clinical microbiology laboratory practice, infectious disease epidemiology, and studies of microbial pathogenesis. Relative to bacterial isolates derived from human clinical specimens, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2018 and 2019. Included are several changes pertinent to former designations of or within Propionibacterium spp., Corynebacterium spp., Clostridium spp., Mycoplasma spp., Methylobacterium spp., and Enterobacteriaceae Future efforts to ascertain clinical relevance for many of these changes may be augmented by a document development committee that has been appointed by the Clinical and Laboratory Standards Institute.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Niang E, Lo C, Morand A, Ndongo S, Raoult D, Fournier PE, Fenollar F. Corynebacterium urinapleomorphum sp. nov., a new bacterial species isolated from human urine sample. New Microbes New Infect 2019; 31:100576. [PMID: 31333850 PMCID: PMC6624320 DOI: 10.1016/j.nmni.2019.100576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Corynebacterium urinapleomorphum sp. nov. stain Marseille-P2799T (= CSURP2799; = DSM103272) is a new species from the order Corynebacteriales that was isolated from urine of a 2-month-old child with gastroenteritis.
Collapse
Affiliation(s)
- E.H.A. Niang
- Aix Marseille Univ, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - C.I. Lo
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - A. Morand
- Aix Marseille Univ, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - S. Ndongo
- Aix Marseille Univ, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - D. Raoult
- Aix Marseille Univ, IRD, AP-HM, MEФI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - P.-E. Fournier
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - F. Fenollar
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
8
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:3379-3393. [DOI: 10.1099/ijsem.0.003071] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|