1
|
Wu T, Bi F, Liu H, Wang S, He P, Zhang J. Identification of nitrogen-fixing bacteria on green tide-causing species and evaluation of their nitrogen-fixing capacity. BIORESOURCE TECHNOLOGY 2025; 428:132450. [PMID: 40147567 DOI: 10.1016/j.biortech.2025.132450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Different algae host distinct phycosphere microenvironments, where mutualistic relationships between algae and symbiotic and epiphytic bacteria are common. Ulva prolifera (U. prolifera) harbors a diverse microbial community that plays a crucial role in its morphogenesis and growth. In this study, 28 bacterial strains were isolated from U. prolifera using 2216E medium. Molecular identification via the nifH gene (nitrogenase coding gene) revealed that three of these strains harbored the nifH gene, all belonging to the genus Cobetia. When co-cultured with sterile U. prolifera for 31 days, the results indicated that these nitrogen-fixing bacteria significantly enhanced the growth of U. prolifera. Nitrogenase activity was quantified, which demonstrated that these bacteria supplied nitrogen to U. prolifera through biological nitrogen fixation, thus promoting its growth. This study demonstrates that there are indeed microorganisms with nitrogen-fixing ability on the U. prolifera, which provide nitrogen for U. prolifera and significantly promote its growth.
Collapse
Affiliation(s)
- Tingting Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuoqi Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Goddard M, Leiva S. Draft genome sequence of a novel species of Radiobacillus (strain PE A8.2) isolated from a red Antarctic seaweed. Microbiol Resour Announc 2025; 14:e0127624. [PMID: 40047494 PMCID: PMC11984126 DOI: 10.1128/mra.01276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 04/11/2025] Open
Abstract
We report the draft genome sequence of Radiobacillus sp. nov. PE A8.2, an endospore-forming bacterium isolated from the surface of the red seaweed Pyropia endiviifolia collected in King George Island, Antarctica. The genome assembly comprised 5,183,530 bp, with a 37.5% G+C content and 5,077 coding sequences.
Collapse
Affiliation(s)
- Matías Goddard
- Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio Leiva
- Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Girão M, Rego A, Fonseca AC, Cao W, Jia Z, Urbatzka R, Leão PN, Carvalho MF. Actinomycetota From Macroalgae as Rich Source for Natural Products Discovery Revealed Through Culture-Dependent and -Independent Approaches. Microb Biotechnol 2024; 17:e70058. [PMID: 39692706 PMCID: PMC11653946 DOI: 10.1111/1751-7915.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Actinomycetota are unrivalled producers of bioactive natural products, with strains living in association with macroalgae representing a prolific-yet largely unexplored-source of specialised chemicals. In this work, we have investigated the bioactive potential of Actinomycetota from macroalgae through culture-dependent and -independent approaches. A bioprospecting pipeline was applied to a collection of 380 actinobacterial strains, recovered from two macroalgae species collected in the Portuguese northern shore-Codium tomentosum and Chondrus crispus-in order to explore their ability to produce antibacterial, antifungal, anticancer and lipid-reducing compounds. Around 43% of the crude extracts showed activity in at least one of the screenings performed: 111 presented antimicrobial activity at 1 mg/mL, 83 significantly decreased cancer cells viability at 15 μg/mL and 5 reduced lipid content in zebrafish > 60% at 15 ug/mL. Dereplication of active extracts unveiled the presence of compounds that could explain most of the recorded results, but also unknown molecules in the metabolome of several strains, highlighting the opportunity for discovery. The bioactive potential of the actinobacterial community from the same macroalgae specimens, which served as the source for the aforementioned Actinomycetota collection, was also explored through metagenomics analysis, allowing to obtain a broader picture of its functional diversity and novelty. A total of 133 biosynthetic gene clusters recovered from metagenomic contigs and metagenome assembled genomes (MAGs). These were grouped into 91 gene cluster families, 83 of which shared less than 30% of similarity to database entries. Our findings provided by culture-dependent and -independent approaches underscore the potential held by actinomycetes from macroalgae as reservoirs for novel bioactive natural products.
Collapse
Affiliation(s)
- Mariana Girão
- CIIMAR ‐ Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortoPortugal
| | - Adriana Rego
- CIIMAR ‐ Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
| | - Ana C. Fonseca
- CIIMAR ‐ Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Ralph Urbatzka
- CIIMAR ‐ Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
| | - Pedro N. Leão
- CIIMAR ‐ Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
| | - Maria F. Carvalho
- CIIMAR ‐ Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortoPortugal
| |
Collapse
|
4
|
Poletto B, Silva GG, Souza Ramos de Carvalho AC, Vincenzi RA, de Almeida EY, Galante D, Bendia AG, Rodrigues F. Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil. ASTROBIOLOGY 2024; 24:783-794. [PMID: 38853686 DOI: 10.1089/ast.2022.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, Nocardioides sp. O4R and Nocardioides sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism Deinococcus radiodurans. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.
Collapse
Affiliation(s)
- Bárbara Poletto
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
- Interunities Postgraduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Carolina Souza Ramos de Carvalho
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
- Interunities Postgraduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | | | - Eiji Yamassaki de Almeida
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
- Interunities Postgraduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Interunities Postgraduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Campinas, Brazil
| | | | - Fabio Rodrigues
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Girão M, Alexandrino DAM, Cao W, Costa I, Jia Z, Carvalho MF. Unveiling the culturable and non-culturable actinobacterial diversity in two macroalgae species from the northern Portuguese coast. Environ Microbiol 2024; 26:e16620. [PMID: 38627038 DOI: 10.1111/1462-2920.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.
Collapse
Affiliation(s)
- Mariana Girão
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Diogo A M Alexandrino
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Environmental Health, School of Health, Porto, Portugal
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Isabel Costa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Maria F Carvalho
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Toumi M, Whitman WB, Kyrpides NC, Woyke T, Wolf J, Neumann-Schaal M, Abbaszade G, Károly B, Tóth E. Antiquaquibacter oligotrophicus gen. nov., sp. nov., a novel oligotrophic bacterium from groundwater. Int J Syst Evol Microbiol 2023; 73. [PMID: 38108591 DOI: 10.1099/ijsem.0.006205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
In this study, a Gram-stain-positive, non-motile, oxidase- and catalase-negative, rod-shaped, bacterial strain (SG_E_30_P1T) that formed light yellow colonies was isolated from a groundwater sample of Sztaravoda spring, Hungary. Based on 16S rRNA phylogenetic and phylogenomic analyses, the strain was found to form a distinct linage within the family Microbacteriaceae. Its closest relatives in terms of near full-length 16S rRNA gene sequences are Salinibacterium hongtaonis MH299814 (97.72 % sequence similarity) and Leifsonia psychrotolerans GQ406810 (97.57 %). The novel strain grows optimally at 20-28 °C, at neutral pH and in the presence of NaCl (1-2 w/v%). Strain SG_E_30_P1T contains MK-7 and B-type peptidoglycan with diaminobutyrate as the diagnostic amino acid. The major cellular fatty acids are anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0, and the polar lipid profile is composed of diphosphatidylglycerol and phosphatidylglycerol, as well as an unidentified aminoglycolipid, aminophospholipid and some unidentified phospholipids. The assembled draft genome is a contig with a total length of 2 897 968 bp and a DNA G+C content of 65.5 mol%. Amino acid identity values with it closest relatives with sequenced genomes of <62.54 %, as well as other genome distance results, indicate that this bacterium represents a novel genus within the family Microbacteriaceae. We suggest that SG_E_30_P1T (=DSM 111415T=NCAIM B.02656T) represents the type strain of a novel genus and species for which the name Antiquaquibacter oligotrophicus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Marwene Toumi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Gorkhmaz Abbaszade
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| | - Bóka Károly
- Department of plant anatomy, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Almeida JF, Marques M, Oliveira V, Egas C, Mil-Homens D, Viana R, Cleary DFR, Huang YM, Fialho AM, Teixeira MC, Gomes NCM, Costa R, Keller-Costa T. Marine Sponge and Octocoral-Associated Bacteria Show Versatile Secondary Metabolite Biosynthesis Potential and Antimicrobial Activities against Human Pathogens. Mar Drugs 2022; 21:md21010034. [PMID: 36662207 PMCID: PMC9860996 DOI: 10.3390/md21010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.
Collapse
Affiliation(s)
- João F. Almeida
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Matilde Marques
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology (CNC), Rua Larga—Faculdade de Medicina, University of Coimbra, 3004-504 Coimbra, Portugal
- Biocant—Transfer Technology Association, BiocantPark, 3060-197 Cantanhede, Portugal
| | - Dalila Mil-Homens
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Romeu Viana
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Daniel F. R. Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong City 880-011, Taiwan
| | - Arsénio M. Fialho
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel C. Teixeira
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Newton C. M. Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| | - Tina Keller-Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| |
Collapse
|
8
|
Experimental evidence of antimicrobial activity in Antarctic seaweeds: ecological role and antibiotic potential. Polar Biol 2022. [DOI: 10.1007/s00300-022-03036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSeaweeds contain a wide range of secondary metabolites which serve multiple functions, including chemical and ecological mediation with microorganisms. Moreover, owing to their diverse bioactivity, including their antibiotic properties, they show potential for human use. Nonetheless, the chemical ecology of seaweeds is not equally understood across different regions; for example, Antarctic seaweeds are among the lesser studied groups. With the aim of improving our current understanding of the chemical ecology and potential bioactivity of Antarctic seaweeds, we performed a screening of antibiotic activity using crude extracts from 22 Antarctic macroalgae species. Extractions were performed separating lipophilic and hydrophilic fractions at natural concentrations. Antimicrobial activity assays were performed using the disk diffusion method against seven Antarctic bacteria and seven human pathogenic surrogates. Our results showed that red seaweeds (especially Delisea pulchra) inhibited a larger number of microorganisms compared with brown seaweeds, and that lipophilic fractions were more active than hydrophilic ones. Both types of bacteria tested (Gram negative and Gram positive) were inhibited, especially by butanolic fractions, suggesting a trend of non-specific chemical defence. However, Gram-negative bacteria and one pathogenic fungus showed greater resistance. Our study contributes to the evidence of antimicrobial chemical interactions between Antarctic seaweeds and sympatric microorganisms, as well as the potential of seaweed extracts for pharmacological applications.
Collapse
|
9
|
Ahmed A, Khurshid A, Tang X, Wang J, Khan TU, Mao Y. Structural and Functional Impacts of Microbiota on Pyropia yezoensis and Surrounding Seawater in Cultivation Farms along Coastal Areas of the Yellow Sea. Microorganisms 2021; 9:microorganisms9061291. [PMID: 34204837 PMCID: PMC8231614 DOI: 10.3390/microorganisms9061291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pyropia yezoensis is the most important commercial edible red algae in China, carrying a variety of resident microbes at its surface. To understand microbiome diversity, community structure, interactions and functions with hosts in this regard, thalli and seawater sampleswere collected from Yantai and Rizhao cultivation farms in the Yellow Sea. The thalli and seawater samples (n = 12) were collected and studied using an Illumina NovaSeq 6000 platform and 16S ribosomal RNA (rRNA) gene sequencing, along with the consideration of environmental factors. Bacterial communities in association with P. yezoensis and surrounding seawater were predominated by Cyanobacteria, Proteobacteria, and Bacteroidetes. The variability of bacterial communities related to P. yezoensis and seawater were predominantly shaped by nitrate (NO3), ammonium (NH4), and temperature. Cluster analysis revealed a close relationship between thalli (RTH and YTH) and seawater (RSW and YSW) in terms of the residing bacterial communities, respectively. PICRUSt analysis revealed the presence of genes associated with amino acid transportation and metabolism, which explained the bacterial dependence on algal-provided nutrients. This study reveals that the diversity of microbiota for P. yezoensis is greatly influenced by abiotic factors and algal organic exudates which trigger chemical signaling and transportation responses from the bacterial community, which in turn activates genes to metabolize subsequent substrates.
Collapse
Affiliation(s)
- Arsalan Ahmed
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Anam Khurshid
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Tehsin Ullah Khan
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
- Correspondence:
| |
Collapse
|
10
|
Zhang L, Xu M, Li X, Lu W, Li J. Sediment Bacterial Community Structure Under the Influence of Different Domestic Sewage Types. J Microbiol Biotechnol 2020; 30:1355-1366. [PMID: 32627763 PMCID: PMC9728189 DOI: 10.4014/jmb.2004.04023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Sediment bacterial communities are critical to the biogeochemical cycle in river ecosystems, but our understanding of the relationship between sediment bacterial communities and their specific input streams in rivers remains insufficient. In this study, we analyzed the sediment bacterial community structure in a local river receiving discharge of urban domestic sewage by applying Illumina MiSeq high-throughput sequencing. The results showed that the bacterial communities of sediments samples of different pollution types had similar dominant phyla, mainly Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes, but their relative abundances were different. Moreover, there were great differences at the genus level. For example, the genus Bacillus showed statistically significant differences in the hotel site. The clustering of bacterial communities at various sites and the dominant families (i.e., Nocardioidaceae, and Sphingomonadaceae) observed in the residential quarter differed from other sites. This result suggested that environmentally induced species sorting greatly influenced the sediment bacterial community composition. The bacterial cooccurrence patterns showed that the river bacteria had a nonrandom modular structure. Microbial taxonomy from the same module had strong ecological links (such as the nitrogenium cycle and degradation of organic pollutants). Additionally, PICRUSt metabolic inference analysis showed the most important function of river bacterial communities under the influence of different types of domestic sewage was metabolism (e.g., genes related to xenobiotic degradation predominated in residential quarter samples). In general, our results emphasize that the adaptive changes and interactions in the bacterial community structure of river sediment represent responses to different exogenous pollution sources.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, P.R. China,Corresponding author Phone: +86-550-3511822 Fax: +550-3511822 E-mail:
| | - Mengli Xu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, P.R. China
| | - Xingchen Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, P.R. China
| | - Wenxuan Lu
- Fisheries Research Institute, Anhui Academy of Sciences, Hefei 230001, P.R. China
| | - Jing Li
- Fisheries Research Institute, Anhui Academy of Sciences, Hefei 230001, P.R. China
| |
Collapse
|
11
|
Picon A, Del Olmo A, Nuñez M. Bacterial diversity in six species of fresh edible seaweeds submitted to high pressure processing and long-term refrigerated storage. Food Microbiol 2020; 94:103646. [PMID: 33279071 DOI: 10.1016/j.fm.2020.103646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Seaweeds are highly perishable foods due to their richness in nutrients. High pressure processing (HPP) has been applied for extending the shelf life of fresh seaweeds but there is no information on the effect of HPP on the bacterial diversity of seaweeds. The culturable bacteria of six species of fresh edible seaweeds (green seaweeds Codium fragile and Ulva lactuca, brown seaweeds Himanthalia elongata, Laminaria ochroleuca and Undaria pinnatifida, and red seaweed Chondrus crispus) were investigated and compared to those of HPP-treated (400 and 600 MPa for 5 min) seaweeds, at the start and end of their refrigerated storage period. A total of 523 and 506 bacterial isolates were respectively retrieved from untreated and HPP-treated seaweeds. Isolates from untreated seaweeds belonged to 18 orders, 35 families, 71 genera and 135 species whereas isolates from HPP-treated seaweeds belonged to 13 orders, 23 families, 43 genera and 103 species. HPP treatment significantly reduced the number of isolates belonging to 6 families and greatly increased the number of Bacillaceae isolates. At the end of storage, decreases in bacterial diversity at the genus and species level were observed for untreated as well as for HPP-treated seaweeds.
Collapse
Affiliation(s)
- Antonia Picon
- INIA, Departamento de Tecnología de Alimentos, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| | - Ana Del Olmo
- INIA, Departamento de Tecnología de Alimentos, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Manuel Nuñez
- INIA, Departamento de Tecnología de Alimentos, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| |
Collapse
|
12
|
Abstract
The marine environment encompasses a huge biological diversity and can be considered as an underexplored location for prospecting bioactive molecules. In this review, the current state of art about antimicrobial molecules from marine bacteria has been summarized considering the main phylum and sources evolved in a marine environment. Considering the last two decades, we have found as most studied group of bacteria producers of substances with antimicrobial activity is the Firmicutes phylum, in particular strains of the Bacillus genus. The reason for that can be attributed to the difficult cultivation of typical Actinobacteria from a marine sediment, whose members are the major producers of antimicrobial substances in land environments. However, a reversed trend has been observed in recent years with an increasing number of reports settling on Actinobacteria. Great diversity of chemical structures have been identified, such as fijimicyns and lynamicyns from Actinomycetes and macrolactins produced by Bacillus.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Selvarajan R, Sibanda T, Venkatachalam S, Ogola HJO, Christopher Obieze C, Msagati TA. Distribution, Interaction and Functional Profiles of Epiphytic Bacterial Communities from the Rocky Intertidal Seaweeds, South Africa. Sci Rep 2019; 9:19835. [PMID: 31882618 PMCID: PMC6934600 DOI: 10.1038/s41598-019-56269-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Interrelations between epiphytic bacteria and macroalgae are multifaceted and complicated, though little is known about the community structure, interaction and functions of those epiphytic bacteria. This study comprehensively characterized the epiphytic bacterial communities associated with eight different common seaweeds collected from a rocky intertidal zone on the Indian Ocean at Cape Vidal, South Africa. High-throughput sequencing analyses indicated that seaweed-associated bacterial communities were dominated by the phyla Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Planctomycetes, Actinobacteria and Verrucomicrobia. Energy-dispersive X-ray (EDX) analysis showed the presence of elemental composition in the surface of examined seaweeds, in varying concentrations. Cluster analysis showed that bacterial communities of brown seaweeds (SW2 and SW4) were closely resembled those of green seaweeds (SW1) and red seaweeds (SW7) while those of brown seaweeds formed a separate branch. Predicted functional capabilities of epiphytic bacteria using PICRUSt analysis revealed abundance of genes related to metabolic and biosynthetic activities. Further important identified functional interactions included genes for bacterial chemotaxis, which could be responsible for the observed association and network of elemental-microbes interaction. The study concludes that the diversity of epiphytic bacteria on seaweed surfaces is greatly influenced by algal organic exudates as well as elemental deposits on their surfaces, which triggers chemotaxis responses from epiphytic bacteria with the requisite genes to metabolise those substrates.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, UNISA, Johannesburg, South Africa.
| | - Timothy Sibanda
- Department of Biological Sciences, University of Namibia, Mandume Ndemufayo Ave, Pionierspark, Windhoek, Namibia
| | | | - Henry J O Ogola
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, UNISA, Johannesburg, South Africa.,Centre for Research, Innovation and Technology, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | | | - Titus A Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa-Science Campus, Florida, South Africa
| |
Collapse
|
14
|
Horta A, Alves C, Pinteus S, Lopes C, Fino N, Silva J, Ribeiro J, Rodrigues D, Francisco J, Rodrigues A, Pedrosa R. Identification of Asparagopsis armata-associated bacteria and characterization of their bioactive potential. Microbiologyopen 2019; 8:e00824. [PMID: 31033207 PMCID: PMC6854849 DOI: 10.1002/mbo3.824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Macroalgae‐associated bacteria have already proved to be an interesting source of compounds with therapeutic potential. Accordingly, the main aim of this study was to characterize Asparagopsis armata‐associated bacteria community and evaluate their capacity to produce substances with antitumor and antimicrobial potential. Bacteria were selected according to their phenotype and isolated by the streak plate technique. The identification was carried out by the RNA ribosomal 16s gene amplification through PCR techniques. The antimicrobial activities were evaluated against seven microorganisms (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae, Candida albicans) by following their growth through spectrophotometric readings. Antitumor activities were evaluated in vitro on human cell lines derived from hepatocellular (HepG‐2) and breast carcinoma (MCF‐7) using the MTT method. The present work identified a total of 21 bacteria belonging to the genus Vibrio, Staphylococcus, Shewanella, Alteromonadaceae, Bacillus, Cobetia, and Photobacterium, with Vibrio being the most abundant (42.86%). The extract of Shewanella sp. ASP 26 bacterial strain induced the highest antimicrobial activity, namely against Bacillus subtilis and Staphylococcus aureus with an IC50 of 151.1 and 346.8 μg/mL, respectively. These bacteria (Shewanella sp.) were also the ones with highest antitumor potential, demonstrating antiproliferative activity on HepG‐2 cells. Asparagopsis armata‐associated bacteria revealed to be a potential source of compounds with antitumor and antibacterial activity.
Collapse
Affiliation(s)
- André Horta
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Cláudia Lopes
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Nádia Fino
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Joana Ribeiro
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Daniel Rodrigues
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - João Francisco
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Américo Rodrigues
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
15
|
Núñez-Montero K, Barrientos L. Advances in Antarctic Research for Antimicrobial Discovery: A Comprehensive Narrative Review of Bacteria from Antarctic Environments as Potential Sources of Novel Antibiotic Compounds Against Human Pathogens and Microorganisms of Industrial Importance. Antibiotics (Basel) 2018; 7:E90. [PMID: 30347637 PMCID: PMC6316688 DOI: 10.3390/antibiotics7040090] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The recent emergence of antibiotic-resistant bacteria has become a critical public health problem. It is also a concern for industries, since multidrug-resistant microorganisms affect the production of many agricultural and food products of economic importance. Therefore, discovering new antibiotics is crucial for controlling pathogens in both clinical and industrial spheres. Most antibiotics have resulted from bioprospecting in natural environments. Today, however, the chances of making novel discoveries of bioactive molecules from various well-known sources have dramatically diminished. Consequently, unexplored and unique environments have become more likely avenues for discovering novel antimicrobial metabolites from bacteria. Due to their extreme polar environment, Antarctic bacteria in particular have been reported as a potential source for new antimicrobial compounds. We conducted a narrative review of the literature about findings relating to the production of antimicrobial compounds by Antarctic bacteria, showing how bacterial adaptation to extreme Antarctic conditions confers the ability to produce these compounds. We highlighted the diversity of antibiotic-producing Antarctic microorganisms, including the phyla Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Bacteroidetes, which has led to the identification of new antibiotic molecules and supports the belief that research on Antarctic bacterial strains has important potential for biotechnology applications, while providing a better understanding of polar ecosystems.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile.
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, 30101 Cartago, Costa Rica.
| | - Leticia Barrientos
- Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile.
| |
Collapse
|