1
|
Lau SH, Su CL, Yu TY, Zhong Y, Xu X, Jane WN, Chang YT. The use of immobilised bacteria cross-linked within magnetic alginate beads enhances the treatment of benzophenone-type UV filter chemicals by the SBR system. CHEMOSPHERE 2023; 334:139038. [PMID: 37244550 DOI: 10.1016/j.chemosphere.2023.139038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Benzophenone-n compounds (BPs) are applied in a broad spectrum of commercial products, one of which is sunscreen. These chemicals are frequently detected in a variety of environmental matrices worldwide, especially water bodies. BPs are defined as emerging contaminants as well as endocrine-disrupting contaminants; thus, it has become necessary to develop aggressive and green treatments to remove BPs. In this study, we used immobilised BP-biodegrading bacteria linked to reusable magnetic alginate beads (MABs). The MABs were added to a sequencing batch reactor (SBR) system to enhance the removal of 2,4-dihydroxybenzophenone (BP-1) and oxybenzone (BP-3) from sewage. The BP-1 and BP-3 biodegrading bacteria in the MABs consisted of strains from up to three genera to allow for efficient biodegradation. The strains used were Pseudomonas spp., Gordonia sp., and Rhodococcus sp. The optimal composition of the MABs consisted of 3% (w/v) alginate and 10% (w/v) magnetite. The MABs resulted in 60.8%-81.7% recovery by weight after 28 days, and there was a continuous release of bacteria. Moreover, the biological treatment of the BPs sewage improved after adding 100 g of BP1-MABs (1:27) and also 100 g BP3-MABs (1:27) into the SBR system at a hydraulic retention time (HRT) of 8 h. Compared with the SBR system without MABs, the removal rates of BP-1 and BP-3 increased from 64.2% to 71.5% and from 78.1% to 84.1%, respectively. Furthermore, the COD removal increased from 36.1% to 42.1%, and total nitrogen increased from 30.5% to 33.2%. Total phosphorus remained constant at 29%. The bacterial community analysis showed that the Pseudomonas population was <2% before the MAB addition, but increased to 56.1% by day 14. In contrast, the Gordonia sp. And Rhodococcus sp. Populations (<2%) remained unchanged throughout the 14-day treatment period.
Collapse
Affiliation(s)
- Sai Hung Lau
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Ching-Lun Su
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Ting-Yu Yu
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - YuYing Zhong
- School of Ocean, Fuzhou University, Fuzhou, 362200, China
| | - XinYuan Xu
- School of Ocean, Fuzhou University, Fuzhou, 362200, China
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan.
| |
Collapse
|
3
|
Ni G, Shi G, Hu C, Wang X, Nie M, Cai M, Cheng Q, Zhao X. Selenium improved the combined remediation efficiency of Pseudomonas aeruginosa and ryegrass on cadmium-nonylphenol co-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117552. [PMID: 34175519 DOI: 10.1016/j.envpol.2021.117552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Most chemical plant wastewater contains both organic and inorganic pollutants, which are easy to diffuse along with surface runoff. The combined pollution of nonylphenol (NP) and cadmium (Cd) in soil is a serious problem that has not attracted enough attention. Based on the effects of selenium (Se) and Pseudomonas aeruginosa (P. aeruginosa) on plant and soil microbial communities, we speculated that the application of Se and P. aeruginosa in soil could improve the phytoremediation efficiency of ryegrass on contaminated soil. In this study, pot experiments with Cd and NP co-contaminated soil were conducted, and the results showed that application of P. aeruinosa alone could improve the removal rates of NP and Cd by ryegrass, and the supplementary of Se further enhanced the effect of micro-phyto remediation, with the highest removal rates of NP and Cd were 79.6% and 49.4%, respectively. The application of P. aeruginosa plus Se reduced the adsorption of Cd and NP through C-O and Si-O-Fe of the soil, changed the enzyme activity, and also affected the changing trend of the microbial community in soil. Pseudomonas, Sphingomonadales, Nitrospira, and other beneficial bacteria were enriched after a 60-day period with P. aeruginosa and Se treatment, thus promoting the removal of NP and Cd. In light of the above results, we suggest that P. aeruginosa application can efficiently facilitate the phytoremediation of ryegrass on Cd-NP co-contaminated soil, and Se supplementation in soil showed the synergistic effect on the remediation.
Collapse
Affiliation(s)
- Gang Ni
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Huazhong Agricultural University, Wuhan, 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Huazhong Agricultural University, Wuhan, 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Huazhong Agricultural University, Wuhan, 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Huazhong Agricultural University, Wuhan, 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Huazhong Agricultural University, Wuhan, 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Huazhong Agricultural University, Wuhan, 430070, China; Research Center of Trace Elements, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:1844-1846. [PMID: 31259678 DOI: 10.1099/ijsem.0.003452] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|