1
|
Uniacke-Lowe S, Stanton C, Hill C, Ross P. Planococcus notacanthi sp. nov., isolated from the skin of a deep-sea snub-nosed spiny eel. Int J Syst Evol Microbiol 2024; 74:006298. [PMID: 38512752 PMCID: PMC10963906 DOI: 10.1099/ijsem.0.006298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
A novel bacterial strain, APC 4016T, was previously isolated from the skin of a snub-nosed spiny eel, Notacanthus chemnitzii, from a depth of 1000 m in the northern Atlantic Ocean. Cells were aerobic, cocci, motile, Gram-positive to Gram-variable staining, and gave rise to orange-pigmented colonies. Growth occurred at 4-40 °C (optimum, 25-28 °C), pH 5.5-12 (optimum, pH 7-7.5), and 0-12 % (w/v) NaCl (optimum, 1 %). 16S rRNA gene phylogenetic analysis confirmed that strain APC 4016T belonged to the genus Planococcus and was most closely related to Planococcus okeanokoites IFO 12536T (98.98 % 16S similarity). However, digital DNA-DNA hybridization and average nucleotide identity values between these two strains were low, at 20.1 and 83.8 %, respectively. Major (>10 %) cellular fatty acids of strain APC 4016T were iso-C14 : 0, anteiso-C15 : 0 and C16 : 1-ω-Alc. The predominant respiratory quinones were menaquinones 5, 6, 7 and 8. The major cellular polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine, and three unknown lipids were also present. The draft genome sequence is 3.6 Mb with a G+C content of 45.25 mol%. This strain was previously shown to have antimicrobial activity and to encode bacteriocin and secondary metabolite biosynthetic gene clusters. Based on the phylogenetic analysis and its distinct phenotypic characteristics, strain APC 4016T is deemed to represent a novel species of the genus Planococcus, and for which the name Planococcus notacanthi sp. nov. is proposed. The type strain of this species is APC 4016T (=DSM 115753T=NCIMB 15463T).
Collapse
Affiliation(s)
- Shona Uniacke-Lowe
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
2
|
Uniacke-Lowe S, Johnson CN, Stanton C, Hill C, Ross P. Winogradskyella bathintestinalis sp. nov., isolated from the intestine of the deep-sea loosejaw dragonfish, Malacosteus niger. Int J Syst Evol Microbiol 2023; 73:10.1099/ijsem.0.006135. [PMID: 37877999 PMCID: PMC7615552 DOI: 10.1099/ijsem.0.006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
A novel bacterial strain, APC 3343T, was isolated from the intestine of a deep-sea loosejaw dragon fish, Malacosteus niger, caught at a depth of 1000 m in the Northwest Atlantic Ocean. Cells were aerobic, rod-shaped, yellow/orange-pigmented, non-motile and Gram-negative. Growth of strain APC 3343T was observed at 4-30 °C (optimum, 21-25 °C), pH 5.5-10 (optimum, pH 7-8) and 0.5-8 % (w/v) NaCl (optimum, 2-4 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain APC 3343T was most closely related to members of the genus Winogradskyella, with the most closely related type strains being Winogradskyella algae Kr9-9T (98.46 % identity), Winogradskyella damuponensis F081-2T (98.07 %), Winogradskyella eximia CECT 7946T (97.93 %), Winogradskyella litoriviva KMM 6491T (97.79 %) and Winogradskyella endarachnes HL2-2T (97.79 %). Major fatty acids (>10 % of total) were iso-C16 : 0 3-OH, iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 3-OH. The predominant respiratory quinone was menaquinone-6 (MK-6). Polar lipids were phosphatidylethanolamine, three unknown aminolipids and eight unknown lipids. The draft genome sequence was 3.8 Mb in length with a G+C content of 33.43 mol%. Based on the phenotypic characteristics and phylogenetic analysis, strain APC 3343T is deemed to be a novel species of the genus Winogradskyella, and for which the name Winogradskyella bathintestinalis sp. nov. is proposed. The type strain of this species is APC 3343T (=DSM 115832T=NCIMB 15464T).
Collapse
Affiliation(s)
- Shona Uniacke-Lowe
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Crystal N. Johnson
- Department of Biochemistry & Microbiology, Oklahoma State University – Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
3
|
Henriksen NNSE, Schostag MD, Balder SR, Bech PK, Strube ML, Sonnenschein EC, Gram L. The ability of Phaeobacter inhibens to produce tropodithietic acid influences the community dynamics of a microalgal microbiome. ISME COMMUNICATIONS 2022; 2:109. [PMID: 37938341 PMCID: PMC9723703 DOI: 10.1038/s43705-022-00193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023]
Abstract
Microbial secondary metabolites facilitate microbial interactions and are crucial for understanding the complexity of microbial community dynamics. The purpose of the present study was to determine how a secondary metabolite producing marine bacteria or its metabolite deficient mutant affected the microbiome of the marine microalgae Tetraselmis suecica during a 70 day long co-evolution experiment. Using 16S rRNA gene amplicon sequencing, we found that neither the tropodithietic acid (TDA)-producing Phaeobacter inhibens wildtype nor the TDA-deficient mutant had major impacts on the community composition. However, a subset of strains, displayed temporally different relative abundance trajectories depending on the presence of P. inhibens. In particular, a Winogradskyella strain displayed temporal higher relative abundance when the TDA-producing wildtype was present. Numbers of the TDA-producing wildtype were reduced significantly more than those of the mutant over time indicating that TDA production was not an advantage. In communities without the P. inhibens wildtype strain, an indigenous population of Phaeobacter increased over time, indicating that indigenous Phaeobacter populations cannot co-exist with the TDA-producing wildtype. Despite that TDA was not detected chemically, we detected transcripts of the tdaC gene indicating that TDA could be produced in the microbial community associated with the algae. Our work highlights the importance of deciphering longitudinal strain dynamics when addressing the ecological effect of secondary metabolites in a relevant natural community.
Collapse
Affiliation(s)
| | - Morten Dencker Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark
| | - Simone Rosen Balder
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark
| | - Eva Christina Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP, Swansea, United Kingdom
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
4
|
Alejandre-Colomo C, Francis B, Viver T, Harder J, Fuchs BM, Rossello-Mora R, Amann R. Cultivable Winogradskyella species are genomically distinct from the sympatric abundant candidate species. ISME COMMUNICATIONS 2021; 1:51. [PMID: 36747039 PMCID: PMC9723794 DOI: 10.1038/s43705-021-00052-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Winogradskyella is a genus within the phylum Bacteroidetes with a clear marine origin. Most members of this genus have been found associated with marine animals and algae, but also with inorganic surfaces such as sand. In this study, we analyzed genomes of eleven species recently isolated from surface seawater samples from the North Sea during a single spring algae bloom. Corresponding metagenomes yielded a single Candidatus species for this genus. All species in culture, with the exception of W. ursingii, affiliated with a Winogradskyella lineage characterized by large genomes (~4.3 ± 0.4 Mb), with high complexity in their carbohydrate and protein degradation genes. Specifically, the polysaccharide utilization loci (PULs) were diverse within each individual strain, indicating large substrate versatility. Although present in the North Sea, the abundances of these strains were at, or below, the detection limit of the metagenomes. In contrast, the single species, classified as Candidatus W. atlantica, to which all North Sea MAGs belonged, affiliated with a lineage in which the cultivated representatives showed small genomes of ~3.0-3.5 Mb, with the MAGs having ~2.3 Mb. In Ca. W. atlantica, genome streamlining has apparently resulted in the loss of biosynthesis pathways for several amino acids including arginine, methionine, leucine and valine, and the PUL loci were reduced to a single one for utilizing laminarin. This as-yet uncultivated species seems to capitalize on sporadically abundant substrates that are released by algae blooms, mainly laminarin. We also suggest that this streamlined genome might be responsible for the lack of growth on plates for this Candidatus species, in contrast to growth of the less abundant but coexisting members of the genus.
Collapse
Affiliation(s)
- Carlota Alejandre-Colomo
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marques 21, 07190, Esporles, Spain
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Ben Francis
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marques 21, 07190, Esporles, Spain
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marques 21, 07190, Esporles, Spain.
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.
| |
Collapse
|
5
|
Yin R, Yi YJ, Chen Z, Chen GJ, Zhou YX, Du ZJ. Flavihalobacter algicola gen. nov. sp. nov., a member of the family Flavobacteriaceae with alginate-degradation activity, isolated from marine alga Saccharina japonica. Int J Syst Evol Microbiol 2021; 71. [PMID: 33565957 DOI: 10.1099/ijsem.0.004701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, yellow, non-motile, rod-shaped and alginate-degrading bacterium, designated Dm15T, was isolated from marine alga collected in Weihai, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Dm15T represents a distinct line of the family Flavobacteriaceae. Strain Dm15T had the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Arcticiflavibacter luteus (96.7 %) and 93.7-96.4 % sequence similarity to other phylogenetic neighbours (Bizionia paragorgiae, Winogradskyella thalassocola, Ichthyenterobacterium magnum, Psychroserpens burtonensis and Arcticiflavibacter luteus) in the family Flavobacteriaceae. The novel isolate was able to grow at 10-40 °C (optimum, 30-33 °C), pH 7.0-9.0 (optimum, pH 7.0-7.5) and with 0.5-6.0 % NaCl (optimum 2.0-3.0 %, w/v). It could grow at 40 °C, and degrade alginate and cellulose, which were different from the neighbour genera. The draft genome consisted of 3395 genes with a total length of 3 798 431 bp and 34.1mol% G+C content. Especially, there were some specific genes coding for cellulase and alginate lyase, which provided a basis for the above phenotypic characteristics. The strain's genome sequence showed 71.1-80.2 % average amino acid identity values and 71.8-77.7 % average nucleotide identity values compared to the type strains of related genera within the family Flavobacteriaceae. It shared digital DNA-DNA hybridization identity of 19.8 and 20.9 % with I. magnum and A. luteus, respectively. The sole menaquinone was MK-6. The major fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The polar lipids included six unidentified polar lipids, four unidentified aminolipids and phosphatidylethanolamine. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain Dm15T represents a novel species of a new genus in the family Flavobacteriaceae, phylum Bacteroidetes, for which the name Flavihalobacter algicola gen. nov., sp. nov. is proposed. The type strain is Dm15T (KCTC 42256T=CICC 23815T).
Collapse
Affiliation(s)
- Rui Yin
- Marine College, Shandong University, Weihai 264209, PR China
| | - Yan-Jun Yi
- Marine College, Shandong University, Weihai 264209, PR China
| | - Zhuo Chen
- Marine College, Shandong University, Weihai 264209, PR China
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, PR China
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, PR China
| |
Collapse
|
6
|
Alejandre-Colomo C, Viver T, Urdiain M, Francis B, Harder J, Kämpfer P, Amann R, Rosselló-Móra R. Taxonomic study of nine new Winogradskyella species occurring in the shallow waters of Helgoland Roads, North Sea. Proposal of Winogradskyella schleiferi sp. nov., Winogradskyella costae sp. nov., Winogradskyella helgolandensis sp. nov., Winogradskyella vidalii sp. nov., Winogradskyella forsetii sp. nov., Winogradskyella ludwigii sp. nov., Winogradskyella ursingii sp. nov., Winogradskyella wichelsiae sp. nov., and Candidatus "Winogradskyella atlantica" sp. nov. Syst Appl Microbiol 2020; 43:126128. [PMID: 32977081 DOI: 10.1016/j.syapm.2020.126128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
Evaluation of bacterial succession with cultivation-dependent strategies during a spring phytoplankton bloom in the North Sea led to the isolation of 41 strains that affiliated with the genus Winogradskyella. Fifteen of the strains were selected for a taxonomic study after discarding clonal cultures. A thorough phylogenetic, genomic and phenotypic analysis of the isolates indicated that they represented eight new species that coexisted in North Sea waters. Molecular data revealed the existence of an as yet uncultivated novel species recurrently binned from the North Sea metagenomes. The metagenome-assembled genomes (MAGs) of this new Winogradskyella were used to classify it as a new Candidatus species. This study represented a new example of the use of the tandem approach of whole cell mass spectrometry linked to 16S rRNA gene sequencing in order to facilitate the discovery of new taxa by high-throughput cultivation, which increases the probability of finding more than a single isolate for new species. In addition, we demonstrated the reasons for classifying MAGs representing recurrently retrieved heterotrophic species that evade cultivation even after an important high-throughput effort. The taxonomic study resulted in the classification of eight new species and one new Candidatus species of the genus Winogradskyella for which we propose the names W. schleiferi sp. nov., W. costae sp. nov., W. helgolandensis sp. nov., W. vidalii sp. nov., W. forsetii sp. nov., W. ludwigii sp. nov., W. ursingii sp. nov., W. wichelsiae sp. nov., and Candidatus "W. atlantica" sp. nov.
Collapse
Affiliation(s)
- Carlota Alejandre-Colomo
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190 Esporles, Illes Balears, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190 Esporles, Illes Balears, Spain
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190 Esporles, Illes Balears, Spain
| | - Ben Francis
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus Liebig Universität Giessen, IFZ-Heinrich-Buff-Ring, Giessen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190 Esporles, Illes Balears, Spain.
| |
Collapse
|
7
|
Song J, Lim Y, Jang HJ, Joung Y, Kang I, Hong SJ, Lee CG, Cho JC. Isolation and genome analysis of Winogradskyella algicola sp. nov., the dominant bacterial species associated with the green alga Dunaliella tertiolecta. J Microbiol 2019; 57:982-990. [DOI: 10.1007/s12275-019-9378-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
|
8
|
Oren A, Garrity G. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:2627-2629. [PMID: 31478825 DOI: 10.1099/ijsem.0.003624] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|