1
|
Wang Q, Li Q, Ouyang F, Ke B, Jiang S, Liu J, Yan J, Li B, Tan W, He D. Molecular epidemiology and antimicrobial resistance of Vibrio parahaemolyticus isolates from the Pearl River Delta region, China. Int J Food Microbiol 2025; 429:111025. [PMID: 39693858 DOI: 10.1016/j.ijfoodmicro.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Pearl River Delta (PRD) region in southern China is a densely populated area and a hotspot for Vibrio parahaemolyticus infections. However, systematic research on this pathogen, particularly comparing clinical and environmental strains, remains limited. This study analyzed the molecular epidemiology and antimicrobial resistance of 200 V. parahaemolyticus isolates from 12 cities in the PRD region from 2022 to 2023. The results indicated that the most prevalent serotypes were O3:K6 (39.5 %) and O10:K4 (27.5 %), predominantly found in clinical isolates. Most clinical isolates exhibited the characteristics of toxRS/new+, tdh+, and trh-, along with the sequence type 3 (ST3), while environmental isolates did not possess these genetic markers. Antimicrobial susceptibility testing showed that although clinically recommended antibiotics remain effective, some isolates have exhibited resistance, with environmental isolates displaying higher rates of antimicrobial resistance than clinical isolates. Moreover, a total of 26 antibiotic resistance genes (ARGs) associated with 10 antibiotic categories were identified, showing variations in distribution patterns among isolates from different sources. Phylogenetic analysis indicated that clinical isolates formed a distinct lineage, contrasting with the greater diversity observed in environmental isolates. Whole-genome analysis further revealed significant differences in pathogenicity-related genes between the two groups, with genes associated with biofilm formation and antimicrobial resistance being more commonly found in environmental isolates. These findings underscore the genetic variability and distinct patterns of antimicrobial resistance between clinical and environmental V. parahaemolyticus strains, highlighting the need for ongoing surveillance and targeted interventions to effectively address foodborne illnesses.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Microbiological Laboratory, Baoan District Center for Disease Control and Prevention, Shenzhen 518101, China
| | - Qingmei Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen 518107, China
| | - Fangzhu Ouyang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Bixia Ke
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Shiqin Jiang
- Department of Clinical Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, China
| | - Jiajun Liu
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Jin Yan
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China.
| | - Wei Tan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Dongmei He
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China.
| |
Collapse
|
2
|
Multilocus Sequence Typing and Virulence Potential of Vibrio parahaemolyticus Strains Isolated from Aquatic Bird Feces. Microbiol Spectr 2022; 10:e0088622. [PMID: 35695558 PMCID: PMC9241773 DOI: 10.1128/spectrum.00886-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative, foodborne pathogenic bacterium that causes human gastroenteritis. This organism is ubiquitously present in the marine environment. Detection of V. parahaemolyticus in aquatic birds has been previously reported; however, the characterization of isolates of this bacterium recovered from these birds remains limited. The present study isolated and characterized V. parahaemolyticus from aquatic bird feces at the Bangpu Recreation Center (Samut Prakan province, Thailand) from 2016 to 2017, using multilocus sequence typing (MLST) and genome analysis. The results showed that V. parahaemolyticus was present in 34.9% (76/218) of the collected bird fecal samples. Among the ldh-positive V. parahaemolyticus isolates (n = 308), 1% (3/308) were positive for tdh, 1.3% (4/308) were positive for trh, and 0.3% (1/308) were positive for both tdh and trh. In turn, the MLST analysis revealed that 49 selected V. parahaemolyticus isolates resolved to 36 STs, 26 of which were novel (72.2%). Moreover, a total of 10 identified STs were identical to globally reported pathogenic strains (ST1309, ST1919, ST491, ST799, and ST2516) and environmental strains (ST1879, ST985, ST288, ST1925, and ST260). The genome analysis of isolates possessing tdh and/or trh (ST985, ST1923, ST1924, ST1929 and ST2516) demonstrated that the organization of the T3SS2α and T3SS2β genes in bird fecal isolates were almost identical to those of human clinical strains posing public health concerns of pathogen dissemination in the recreational area. The results of this study suggest that aquatic birds are natural reservoirs of new strains with high genetic diversity and are alternative sources of potentially pathogenic V. parahaemolyticus in the marine environment. IMPORTANCE To our knowledge, infection of foodborne bacterium V. parahamolyticus occurs via the consumption of undercooked seafood contaminated with pathogenic strains. Aquatic bird is a neglectable source that can transmit V. parahaemolyticus along coastal areas. This study reported the detection of potentially pathogenic V. parahamolyticus harboring virulence genes from aquatic bird feces at the recreational center situated near the Gulf of Thailand. These strains shared identical genetic profile to the clinical isolates that previously reported in many countries. Furthermore, the strains from aquatic birds showed extremely high genetic diversity. Our research pointed out that the aquatic bird is possibly involved in the evolution of novel strains of V. parahaemolyticus and play a role in dissimilation of the potentially pathogenic strains across geographical distance.
Collapse
|
3
|
Yang Q, Wang Q, Wu J, Zhang Y, Wei D, Qu B, Liu Y, Fu S. Distinct dynamics of Vibrio parahaemolyticus populations in two farming models. J Appl Microbiol 2021; 133:1146-1155. [PMID: 34260793 DOI: 10.1111/jam.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
AIMS Despite the recent prosperity of shrimp cultivation in China, very little is known about how different shrimp farming models influence the dynamics of Vibrio parahaemolyticus populations and the antibiotic resistance of this bacterium. METHODS AND RESULTS To this end, we conducted continuous surveillance of V. parahaemolyticus on four farms over 3 years: two traditional shrimp farms with daily water exchange and two farms operated in the recirculating aquaculture systems (RAS). No antibiotics were used in these farms to exclude the potential impacts of antibiotics on the emergence of antibacterial resistance. Multilocus sequence typing was utilized to characterize the dynamics of V. parahaemolyticus populations. Whole-genome sequencing (WGS) was conducted to determine the representative sequence types (STs) at each farm. Results revealed that the population structure of V. parahaemolyticus remained stable over time in both RAS farms, with only nine and four STs observed at each. In contrast, annual replacement of V. parahaemolyticus populations was observed in traditional farms with 26 and 28 STs identified in rearing water. WGS of 50 isolates divided them into five clusters, of which ST917a isolates harboured a genomic island that disrupted the gene recA. Pair-wised genomic comparison of isolates from the same STs showed that they were genetically related but belonged to different clones associated with geographical distribution. CONCLUSIONS These results suggested that RAS presented a specific ecological niche by minimizing the water exchanges with the external environment. In contrast, traditional farming might pose a food safety issue by introducing new V. parahaemolyticus populations with antibiotic resistance genes. SIGNIFICANCE AND IMPACT OF THE STUDY Our results expose the potential food safety issue associated with conventional agriculture and should encourage the development of preventive strategies to reduce the emergence of resistant V. parahaemolyticus populations.
Collapse
Affiliation(s)
- Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Junmin Wu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Yixiang Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Dawei Wei
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Qu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Ying Liu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| | - Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China.,Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, China
| |
Collapse
|