1
|
Kenney JR, Shates T, Gebiola M, Mauck KE. Hiding in Plain Sight: A Widespread Native Perennial Harbors Diverse Haplotypes of ' Candidatus Liberibacter solanacearum' and Its Potato Psyllid Vector. PHYTOPATHOLOGY 2024; 114:1554-1565. [PMID: 38602688 DOI: 10.1094/phyto-01-24-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The unculturable bacterium 'Candidatus Liberibacter solanacearum' (CLso) is responsible for a growing number of emerging crop diseases. However, we know little about the diversity and ecology of CLso and its psyllid vectors outside of agricultural systems, which limits our ability to manage crop disease and understand the impacts this pathogen may have on wild plants in natural ecosystems. In North America, CLso is transmitted to crops by the native potato psyllid (Bactericera cockerelli). However, the geographic and host plant range of the potato psyllid and CLso beyond the borders of agriculture are not well understood. A recent study of historic herbarium specimens revealed that a unique haplotype of CLso was present infecting populations of the native perennial Solanum umbelliferum in California decades before CLso was first detected in crops. We hypothesized that this haplotype and other potentially novel CLso variants are still present in S. umbelliferum populations. To test this, we surveyed populations of S. umbelliferum in Southern California for CLso and potato psyllid vectors. We found multiple haplotypes of CLso and the potato psyllid associated with these populations, with none of these genetic variants having been previously reported in California crops. These results suggest that CLso and its psyllid vectors are much more widespread and diverse in North American natural plant communities than suggested by data collected solely from crops and weeds in agricultural fields. Further characterization of these apparently asymptomatic haplotypes will facilitate comparison with disease-causing variants and provide insights into the continued emergence and spread of CLso.
Collapse
Affiliation(s)
- Jaimie R Kenney
- Department of Entomology, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Tessa Shates
- Department of Entomology, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Marco Gebiola
- Department of Entomology, University of California Riverside, Riverside, CA 92521, U.S.A
- Department of Agricultural Sciences, University of Naples Federico II, 80155 Portici (NA), Italy
| | - Kerry E Mauck
- Department of Entomology, University of California Riverside, Riverside, CA 92521, U.S.A
| |
Collapse
|
2
|
Chuan J, Nie J, Cooper WR, Chen W, Hale L, Li X. The functional decline of tomato plants infected by Candidatus Liberbacter solanacearum: an RNA-seq transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1325254. [PMID: 38362455 PMCID: PMC10867784 DOI: 10.3389/fpls.2024.1325254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Introduction Candidatus Liberibacter solanacearum (CLso) is a regulated plant pathogen in European and some Asian countries, associated with severe diseases in economically important Apiaceous and Solanaceous crops, including potato, tomato, and carrot. Eleven haplotypes of CLso have been identified based on the difference in rRNA and conserved genes and host and pathogenicity. Although it is pathogenic to a wide range of plants, the mechanisms of plant response and functional decline of host plants are not well defined. This study aims to describe the underlying mechanism of the functional decline of tomato plants infected by CLso by analyzing the transcriptomic response of tomato plants to CLso haplotypes A and B. Methods Next-generation sequencing (NGS) data were generated from total RNA of tomato plants infected by CLso haplotypes A and B, and uninfected tomato plants, while qPCR analysis was used to validate the in-silico expression analysis. Gene Ontology and KEGG pathways were enriched using differentially expressed genes. Results Plants infected with CLso haplotype B saw 229 genes upregulated when compared to uninfected plants, while 1,135 were downregulated. Healthy tomato plants and plants infected by haplotype A had similar expression levels, which is consistent with the fact that CLso haplotype A does not show apparent symptoms in tomato plants. Photosynthesis and starch biosynthesis were impaired while starch amylolysis was promoted in plants infected by CLso haplotype B compared with uninfected plants. The changes in pathway gene expression suggest that carbohydrate consumption in infected plants was more extensive than accumulation. In addition, cell-wall-related genes, including steroid biosynthesis pathways, were downregulated in plants infected with CLso haplotype B suggesting a reduction in membrane fluidity, cell signaling, and defense against bacteria. In addition, genes in phenylpropanoid metabolism and DNA replication were generally suppressed by CLso infection, affecting plant growth and defense. Discussion This study provides insights into plants' defense and functional decline due to pathogenic CLso using whole transcriptome sequencing and qPCR validation. Our results show how tomato plants react in metabolic pathways during the deterioration caused by pathogenic CLso. Understanding the underlying mechanisms can enhance disease control and create opportunities for breeding resistant or tolerant varieties.
Collapse
Affiliation(s)
- Jiacheng Chuan
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
- Biology Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Jingbai Nie
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
| | - William Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, United States
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Lawrence Hale
- Biology Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Xiang Li
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
| |
Collapse
|
3
|
Wenninger EJ, Rashed A. Biology, Ecology, and Management of the Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and Zebra Chip Disease in Potato. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:139-157. [PMID: 37616600 DOI: 10.1146/annurev-ento-020123-014734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), transmits the pathogen "Candidatus liberibacter solanacearum" (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.
Collapse
Affiliation(s)
- Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, Idaho, USA;
| | - Arash Rashed
- Department of Entomology, Southern Piedmont Agricultural Research & Extension Center, Virginia Tech, Blackstone, Virginia, USA;
| |
Collapse
|
4
|
Levy JG, Oh J, Mendoza Herrera A, Parida A, Lao L, Starkey J, Yuan P, Kan CC, Tamborindeguy C. A ' Candidatus Liberibacter solanacearum' Haplotype B-Specific Family of Candidate Bacterial Effectors. PHYTOPATHOLOGY 2023; 113:1708-1715. [PMID: 37665323 DOI: 10.1094/phyto-11-22-0438-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.
Collapse
Affiliation(s)
- Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
| | - Junepyo Oh
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Adwaita Parida
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Loi Lao
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Jesse Starkey
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Chia-Cheng Kan
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
5
|
Trkulja V, Tomić A, Matić S, Trkulja N, Iličić R, Popović Milovanović T. An Overview of the Emergence of Plant Pathogen ' Candidatus Liberibacter solanacearum' in Europe. Microorganisms 2023; 11:1699. [PMID: 37512871 PMCID: PMC10383523 DOI: 10.3390/microorganisms11071699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In this paper, a comprehensive overview of the 'Candidatus Liberibacter solanacearum' presence in Europe was provided. The analyzed findings revealed that, since the first appearance of this pathogen in Finland and Spain in 2008, it has spread to 13 new European countries. Therefore, 'Ca. L. solanacearum' has spread very quickly across the European continent, as evident from the emergence of new host plants within the Apiaceae, Urticaceae, and Polygonaceae families, as well as new haplotypes of this pathogen. Thus far, 5 of the 15 'Ca. L. solanacearum' haplotypes determined across the globe have been confirmed in Europe (haplotypes C, D, E, U, and H). Fully competent 'Ca. L. solanacearum' vectors include Bactericera cockerelli, Trioza apicalis, and B. trigonica; however, only T. apicalis and B. trigonica are presently established in Europe and are very important for plants from the Apiaceae family in particular. Moreover, psyllid species such as B. tremblayi, T. urticae, and T. anthrisci have also been confirmed positive for 'Ca. L. solanacearum'. Constant monitoring of its spread in the field (in both symptomatic and asymptomatic plants), use of sensitive molecular diagnostic techniques, and application of timely management strategies are, therefore, of utmost importance for the control of this destructive pathogen.
Collapse
Affiliation(s)
- Vojislav Trkulja
- Agricultural Institute of Republic of Srpska, Knjaza Miloša 17, 78000 Banja Luka, Bosnia and Herzegovina
| | - Andrija Tomić
- Faculty of Agriculture, University of East Sarajevo, Vuka Karadžića 30, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
| | - Nenad Trkulja
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia
| | - Renata Iličić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | | |
Collapse
|
6
|
Chuan J, Xu H, Hammill DL, Hale L, Chen W, Li X. Clasnip: a web-based intraspecies classifier and multi-locus sequence typing for pathogenic microorganisms using fragmented sequences. PeerJ 2023; 11:e14490. [PMID: 36643626 PMCID: PMC9835710 DOI: 10.7717/peerj.14490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
Bioinformatic approaches for the identification of microorganisms have evolved rapidly, but existing methods are time-consuming, complicated or expensive for massive screening of pathogens and their non-pathogenic relatives. Also, bioinformatic classifiers usually lack automatically generated performance statistics for specific databases. To address this problem, we developed Clasnip (www.clasnip.com), an easy-to-use web-based platform for the classification and similarity evaluation of closely related microorganisms at interspecies and intraspecies levels. Clasnip mainly consists of two modules: database building and sample classification. In database building, labeled nucleotide sequences are mapped to a reference sequence, and then single nucleotide polymorphisms (SNPs) statistics are generated. A probability model of SNPs and classification groups is built using Hidden Markov Models and solved using the maximum likelihood method. Database performance is estimated using three replicates of two-fold cross-validation. Sensitivity (recall), specificity (selectivity), precision, accuracy and other metrics are computed for all samples, training sets, and test sets. In sample classification, Clasnip accepts inputs of genes, short fragments, contigs and even whole genomes. It can report classification probability and a multi-locus sequence typing table for SNPs. The classification performance was tested using short sequences of 16S, 16-23S and 50S rRNA regions for 12 haplotypes of Candidatus Liberibacter solanacearum (CLso), a regulated plant pathogen associated with severe disease in economically important Apiaceous and Solanaceous crops. The program was able to classify CLso samples with even only 1-2 SNPs available, and achieved 97.2%, 98.8% and 100.0% accuracy based on 16S, 16-23S, and 50S rRNA sequences, respectively. In comparison with all existing 12 haplotypes, we proposed that to be classified as a new haplotype, given samples have at least 2 SNPs in the combined region of 16S rRNA (OA2/Lsc2) and 16-23S IGS (Lp Frag 4-1611F/Lp Frag 4-480R) regions, and 2 SNPs in the 50S rplJ/rplL (CL514F/CL514R) regions. Besides, we have included the databases for differentiating Dickeya spp., Pectobacterium spp. and Clavibacter spp. In addition to bacteria, we also tested Clasnip performance on potato virus Y (PVY). 251 PVY genomes were 100% correctly classified into seven groups (PVYC, PVYN, PVYO, PVYNTN, PVYN:O, Poha, and Chile3). In conclusion, Clasnip is a statistically sound and user-friendly bioinformatic application for microorganism classification at the intraspecies level. Clasnip service is freely available at www.clasnip.com.
Collapse
Affiliation(s)
- Jiacheng Chuan
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada,Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Huimin Xu
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| | - Desmond L. Hammill
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| | - Lawrence Hale
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Wen Chen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Xiang Li
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
7
|
Quintana M, de-León L, Cubero J, Siverio F. Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of ‘Candidatus Liberibacter Solanacearum’ by qPCR. Microorganisms 2022; 10:microorganisms10061104. [PMID: 35744622 PMCID: PMC9230594 DOI: 10.3390/microorganisms10061104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
‘Candidatus Liberibacter solanacearum’ (CaLsol) is an uncultured bacterium, transmitted by psyllids and associated with several diseases in Solanaceae and Apiaceae crops. CaLsol detection in psyllids often requires insect destruction, preventing a subsequent morphological identification. In this work, we have assessed the influence on the detection of CaLsol by PCR in Bactericera trigonica (Hemiptera: Psyllidae), of four specimen preparations (entire body, ground, cut-off head, and punctured abdomen) and seven DNA extraction methods (PBS suspension, squashing on membrane, CTAB, Chelex, TRIsureTM, HotSHOT, and DNeasy®). DNA yield and purity ratios, time consumption, cost, and residues generated were also evaluated. Optimum results were obtained through grinding, but it is suggested that destructive procedures are not essential in order to detect CaLsol. Although CaLsol was detected by qPCR with DNA obtained by the different procedures, HotSHOT was the most sensitive method. In terms of time consumption and cost, squashed on membrane, HotSHOT, and PBS were the fastest, while HotSHOT and PBS were the cheapest. In summary, HotSHOT was accurate, fast, simple, and sufficiently sensitive to detect this bacterium within the vector. Additionally, cross-contamination with CaLsol was assessed in the ethanol solutions where B. trigonica specimens were usually collected and preserved. CaLsol-free psyllids were CaLsol-positive after incubation with CaLsol-positive specimens. This work provides a valuable guide when choosing a method to detect CaLsol in vectors according to the purpose of the study.
Collapse
Affiliation(s)
- María Quintana
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, 38270 San Cristóbal de La Laguna, Spain;
- Correspondence:
| | - Leandro de-León
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain;
| | - Jaime Cubero
- Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain;
| | - Felipe Siverio
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, 38270 San Cristóbal de La Laguna, Spain;
- Sección de Laboratorio de Sanidad Vegetal, Consejería de Agricultura, Ganadería, Pesca y Aguas del Gobierno de Canarias, 38270 San Cristóbal de La Laguna, Spain
| |
Collapse
|
8
|
Reyes-Corral CA, Cooper WR, Karasev AV, Delgado-Luna C, Sanchez-Peña SR. ' Candidatus Liberibacter solanacearum' Infection of Physalis ixocarpa Brot. (Solanales: Solanaceae) in Saltillo, Mexico. PLANT DISEASE 2021; 105:2560-2566. [PMID: 33455443 DOI: 10.1094/pdis-10-20-2240-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The potato psyllid Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) is a pest of solanaceous crops (order Solanales), including potato (Solanum tuberosum L.) and tomato (S. lycopersicum L.). Feeding by high populations of nymphs causes psyllid yellows while adults and nymphs are vectors of the plant pathogen 'Candidatus Liberibacter solanacearum'. Foliar symptoms that were consistent with either 'Ca. L. solanacearum' infection or psyllid yellows were observed in 2019 on tomatillo (Physalis ixocarpa Brot.; family Solanaceae) grown within an experimental plot located near Saltillo, Mexico. This study had three primary objectives: 9i) determine whether the foliar symptoms observed on tomatillo were associated with 'Ca. L. solanacearum' infection, (ii) identify the haplotypes of 'Ca. L. solanacearum' and potato psyllids present in the symptomatic plot, and (iii) use gut content analysis to infer the plant sources of 'Ca. L. solanacearum'-infected psyllids. Results confirmed that 71% of symptomatic plants and 71% of psyllids collected from the plants were infected with 'Ca. L. solanacearum'. The detection of 'Ca. L. solanacearum' in plants and psyllids and the lack of nymphal populations associated with psyllid yellows strongly suggests that the observed foliar symptoms were caused by 'Ca. L. solanacearum' infection. All infected plants and insects harbored the more virulent 'Ca. L. solanacearum' haplotype B but one psyllid was also coinfected with haplotype A. The potato psyllids were predominantly of the central haplotype but one psyllid was identified as the western haplotype. Molecular gut content analysis of psyllids confirmed the movement of psyllids between noncrop habitats and tomatillo and indicated that 'Ca. L. solanacearum' infection of psyllids was associated with increased plant diversity in their diet.
Collapse
Affiliation(s)
- Cesar A Reyes-Corral
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A
- United States Department of Agriculture-Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, U.S.A
| | - W Rodney Cooper
- United States Department of Agriculture-Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, U.S.A
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A
| | - Carolina Delgado-Luna
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 25315 Mexico
| | - Sergio R Sanchez-Peña
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 25315 Mexico
| |
Collapse
|
9
|
Mora V, Ramasamy M, Damaj MB, Irigoyen S, Ancona V, Ibanez F, Avila CA, Mandadi KK. Potato Zebra Chip: An Overview of the Disease, Control Strategies, and Prospects. Front Microbiol 2021; 12:700663. [PMID: 34367101 PMCID: PMC8339554 DOI: 10.3389/fmicb.2021.700663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide. As the demand for fresh and processed potato products is increasing globally, there is a need to manage and control devastating diseases such as zebra chip (ZC). ZC disease causes major yield losses in many potato-growing regions and is associated with the fastidious, phloem-limited bacterium Candidatus Liberibacter solanacearum (CLso) that is vectored by the potato-tomato psyllid (Bactericera cockerelli Šulc). Current management measures for ZC disease mainly focus on chemical control and integrated pest management strategies of the psyllid vector to limit the spread of CLso, however, they add to the costs of potato production. Identification and deployment of CLso and/or the psyllid resistant cultivars, in combination with integrated pest management, may provide a sustainable long-term strategy to control ZC. In this review, we provide a brief overview of the ZC disease, epidemiology, current management strategies, and potential new approaches to manage ZC disease in the future.
Collapse
Affiliation(s)
- Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Freddy Ibanez
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Entomology, Minnie Bell Heep Center, Texas A&M University, College Station, TX, United States
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Sumner-Kalkun JC, Highet F, Arnsdorf YM, Back E, Carnegie M, Madden S, Carboni S, Billaud W, Lawrence Z, Kenyon D. 'Candidatus Liberibacter solanacearum' distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae). Sci Rep 2020; 10:16567. [PMID: 33024134 PMCID: PMC7538894 DOI: 10.1038/s41598-020-73382-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
The phloem limited bacterium 'Candidatus Liberibacter solanacearum' (Lso) is associated with disease in Solanaceous and Apiaceous crops. This bacterium has previously been found in the UK in Trioza anthrisci, but its impact on UK crops is unknown. Psyllid and Lso diversity and distribution among fields across the major carrot growing areas of Scotland were assessed using real-time PCR and DNA barcoding techniques. Four Lso haplotypes were found: C, U, and two novel haplotypes. Lso haplotype C was also found in a small percentage of asymptomatic carrot plants (9.34%, n = 139) from a field in Milnathort where known vectors of this haplotype were not found. This is the first report of Lso in cultivated carrot growing in the UK and raises concern for the carrot and potato growing industry regarding the potential spread of new and existing Lso haplotypes into crops. Trioza anthrisci was found present only in sites in Elgin, Moray with 100% of individuals harbouring Lso haplotype C. Lso haplotype U was found at all sites infecting Trioza urticae and at some sites infecting Urtica dioica with 77.55% and 24.37% average infection, respectively. The two novel haplotypes were found in Craspedolepta nebulosa and Craspedolepta subpunctata and named Cras1 and Cras2. This is the first report of Lso in psyllids from the Aphalaridae. These new haplotypes were most closely related to Lso haplotype H recently found in carrot and parsnip. Lso was also detected in several weed plants surrounding carrot and parsnip fields. These included two Apiaceous species Aegropodium podagraria (hap undetermined) and Anthriscus sylvestris (hap C); one Gallium sp. (Rubiaceae) (hap undetermined); and Chenopodium album (Amaranthaceae) (hap undetermined).
Collapse
Affiliation(s)
| | - Fiona Highet
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | | | - Emma Back
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | - Mairi Carnegie
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | | | - Silvia Carboni
- Dipartimento Di Agraria, Universita Degli Studi Di Sassari, Viale, Italia 39, 07100, Sassari, Italy
| | | | - Zoë Lawrence
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | - David Kenyon
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| |
Collapse
|