1
|
Vásquez-Castro F, Wicki-Emmenegger D, Fuentes-Schweizer P, Nassar-Míguez L, Rojas-Gätjens D, Rojas-Jimenez K, Chavarría M. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001513. [PMID: 39530301 PMCID: PMC11555687 DOI: 10.1099/mic.0.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.
Collapse
Affiliation(s)
- Felipe Vásquez-Castro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Daniela Wicki-Emmenegger
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- CELEQ, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Layla Nassar-Míguez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
2
|
Ilic-Tomic T, Kramar A, Kostic M, Vojnovic S, Milovanovic J, Petkovic M, D’Agostino PM, Gulder TAM, Nikodinovic-Runic J. Functionalization of silk with actinomycins from Streptomyces anulatus BV365 for biomedical applications. Front Bioeng Biotechnol 2024; 12:1466757. [PMID: 39364265 PMCID: PMC11447452 DOI: 10.3389/fbioe.2024.1466757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Silk, traditionally acclaimed as the "queen of fiber," has been widely used thanks to its brilliant performance such as gentleness, smoothness and comfortableness. Owing to its mechanical characteristics and biocompatibility silk has a definitive role in biomedical applications, both as fibroin and fabric. In this work, the simultaneous dyeing and functionalization of silk fabric with pigments from Streptomyces anulatus BV365 were investigated. This strain produced high amounts of orange extracellular pigments on mannitol-soy flour agar, identified as actinomycin D, C2 and C3. The application of purified actinomycins in the dyeing of multifiber fabric was assessed. Actinomycins exhibited a high affinity towards protein fibers (silk and wool), but washing durability was maintained only with silk. Acidic condition (pH5) and high temperature (65°C) facilitated the silk dyeing. The morphologies and chemical components of the treated silk fabrics were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The results showed the pigments bind to the silk through interaction with the carbonyl group in silk fibroin rendering the functionalized, yet surface that does not cause skin irritation. The treated silk exhibited a remarkable antibacterial effect, while the biocompatibility test performed with 3D-reconstructed human epidermis model indicated safe biological properties, paving the way for future application of this material in medicine.
Collapse
Affiliation(s)
- Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ana Kramar
- Department of Textile Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | - Mirjana Kostic
- Department of Textile Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Milovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Paul M. D’Agostino
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Saarland, Germany
- Technical University of Dresden, Dresden, Saxony, Germany
| | - Tobias A. M. Gulder
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Saarland, Germany
- Technical University of Dresden, Dresden, Saxony, Germany
| | | |
Collapse
|
3
|
Rojas-Villalta D, Núñez-Montero K, Chavarría-Pizarro L. Social wasp-associated Tsukamurella sp. strains showed promising biosynthetic and bioactive potential for discovery of novel compounds. Sci Rep 2024; 14:21118. [PMID: 39256493 PMCID: PMC11387468 DOI: 10.1038/s41598-024-71969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
In the face of escalating antibiotic resistance, the quest for novel antimicrobial compounds is critical. Actinobacteria is known for producing a substantial fraction of bioactive molecules from microorganisms, nonetheless there is the challenge of metabolic redundancy in bioprospecting. New sources of natural products are needed to overcome these current challenges. Our present work proposes an unexplored potential of Neotropical social wasp-associated microbes as reservoirs of novel bioactive compounds. Using social wasp-associated Tsukamurella sp. strains 8F and 8J, we aimed to determine their biosynthetic potential for producing novel antibiotics and evaluated phylogenetic and genomic traits related to environmental and ecological factors that might be associated with promising bioactivity and evolutionary specialization. These strains were isolated from the cuticle of social wasps and subjected to comprehensive genome sequencing. Our genome mining efforts, employing antiSMASH and ARTS, highlight the presence of BGCs with minimal similarity to known compounds, suggesting the novelty of the molecules they may produce. Previous, bioactivity assays of these strains against bacterial species which harbor known human pathogens, revealed inhibitory potential. Further, our study focuses into the phylogenetic and functional landscape of the Tsukamurella genus, employing a throughout phylogenetic analysis that situates strains 8F and 8J within a distinct evolutionary pathway, matching with the environmental and ecological context of the strains reported for this genus. Our findings emphasize the importance of bioprospecting in uncharted biological territories, such as insect-associated microbes as reservoirs of novel bioactive compounds. As such, we posit that Tsukamurella sp. strains 8F and 8J represent promising candidates for the development of new antimicrobials.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Department of Biology, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco, Chile.
| | - Laura Chavarría-Pizarro
- Department of Biology, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.
| |
Collapse
|
4
|
Chavarría-Pizarro L, Núñez-Montero K, Gutiérrez-Araya M, Watson-Guido W, Rivera-Méndez W, Pizarro-Cerdá J. Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae, Epiponini) with antimicrobial potential for natural product discovery. FEMS MICROBES 2024; 5:xtae005. [PMID: 38476864 PMCID: PMC10929769 DOI: 10.1093/femsmc/xtae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against Bacillus thuringensis and Escherichia coli ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Chavarría-Pizarro
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Kattia Núñez-Montero
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 1090, 4810101 Temuco, Chile
| | - Mariela Gutiérrez-Araya
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Watson-Guido
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Rivera-Méndez
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit - Institut Pasteur 28, rue du Docteur Roux - 75724 Paris Cedex 15, France
| |
Collapse
|
5
|
Turillazzi S, Meriggi N, Cavalieri D. Mutualistic Relationships between Microorganisms and Eusocial Wasps (Hymenoptera, Vespidae). Microorganisms 2023; 11:1340. [PMID: 37317314 DOI: 10.3390/microorganisms11051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Eusocial wasps are represented in the Vespidae by the subfamilies Stenogastrinae, Vespinae and Polistinae. These wasps present colonies that are sometimes composed of thousands of individuals which live in nests built with paper materials. The high density of the adult and larval population, as well as the stable micro environment of the nests, make very favourable conditions for the flourishing of various types of microorganisms. These microorganisms, which may be pathogens, are beneficial and certainly contribute to model the sociality of these insects. The mutualistic relationships that we observe in some species, especially in Actinomycete bacteria and yeasts, could have important fallouts for the development of new medicines and for the use of these insects in agricultural environments.
Collapse
Affiliation(s)
- Stefano Turillazzi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Insect Pharma Entomotherapy s.r.l., Via M. del Piano 6, 50019 Firenze, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| |
Collapse
|
6
|
Baranova AA, Zakalyukina YV, Ovcharenko AA, Korshun VA, Tyurin AP. Antibiotics from Insect-Associated Actinobacteria. BIOLOGY 2022; 11:1676. [PMID: 36421390 PMCID: PMC9687666 DOI: 10.3390/biology11111676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/10/2023]
Abstract
Actinobacteria are involved into multilateral relationships between insects, their food sources, infectious agents, etc. Antibiotics and related natural products play an essential role in such systems. The literature from the January 2016-August 2022 period devoted to insect-associated actinomycetes with antagonistic and/or enzyme-inhibiting activity was selected. Recent progress in multidisciplinary studies of insect-actinobacterial interactions mediated by antibiotics is summarized and discussed.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
| | - Anna A. Ovcharenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Higher Chemical College RAS, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
7
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Rojas-Gätjens D, Valverde-Madrigal KS, Rojas-Jimenez K, Pereira R, Avey-Arroyo J, Chavarría M. Antibiotic-producing Micrococcales govern the microbiome that inhabits the fur of two- and three-toed sloths. Environ Microbiol 2022; 24:3148-3163. [PMID: 35621042 DOI: 10.1111/1462-2920.16082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Sloths have a dense coat on which insects, algae, and fungi coexist in a symbiotic relationship. This complex ecosystem requires different levels of control, however, most of these mechanisms remain unknown. We investigated the bacterial communities inhabiting the hair of two- (Choloepus Hoffmani) and three-toed (Bradypus variegatus) sloths and evaluated their potential for producing antibiotic molecules capable of exerting control over the hair microbiota. The analysis of 16S rRNA amplicon sequence variants (ASVs) revealed that the communities in both host species are dominated by Actinobacteriota and Firmicutes. The most abundant genera were Brevibacterium, Kocuria/Rothia, Staphylococcus, Rubrobacter, Nesterenkonia, and Janibacter. Furthermore, we isolated nine strains of Brevibacterium and Rothia capable of producing substances that inhibited the growth of common mammalian pathogens. The analysis of the biosynthetic gene clusters (BCGs) of these nine isolates suggests that the pathogen-inhibitory activity could be mediated by the presence of siderophores, terpenes, beta-lactones, Type III polyketide synthases (T3PKS), ribosomally synthesized, and post-translationally modified peptides (RiPPs), non-alpha poly-amino acids (NAPAA) like e-Polylysin, ectoine or nonribosomal peptides (NRPs). Our data suggest that Micrococcales that inhabit sloth hair could have a role in controlling microbial populations in that habitat, improving our understanding of this highly complex ecosystem. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología (LANOTEC), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
9
|
A Multidisciplinary Approach to Unraveling the Natural Product Biosynthetic Potential of a Streptomyces Strain Collection Isolated from Leaf-Cutting Ants. Microorganisms 2021; 9:microorganisms9112225. [PMID: 34835350 PMCID: PMC8621525 DOI: 10.3390/microorganisms9112225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022] Open
Abstract
The rapid emergence of bacterial resistance to antibiotics has urged the need to find novel bioactive compounds against resistant microorganisms. For that purpose, different strategies are being followed, one of them being exploring secondary metabolite production in microorganisms from uncommon sources. In this work, we have analyzed the genome of 12 Streptomyces sp. strains of the CS collection isolated from the surface of leaf-cutting ants of the Attini tribe and compared them to four Streptomyces model species and Pseudonocardia sp. Ae150A_Ps1, which shares the ecological niche with those of the CS collection. We used a combination of phylogenetics, bioinformatics and dereplication analysis to study the biosynthetic potential of our strains. 51.5% of the biosynthetic gene clusters (BGCs) predicted by antiSMASH were unknown and over half of them were strain-specific, making this strain collection an interesting source of putative novel compounds.
Collapse
|
10
|
Promnuan Y, Promsai S, Pathom-aree W, Meelai S. Apis andreniformis associated Actinomycetes show antimicrobial activity against black rot pathogen ( Xanthomonas campestris pv. campestris). PeerJ 2021; 9:e12097. [PMID: 34589300 PMCID: PMC8435200 DOI: 10.7717/peerj.12097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate cultivable actinomycetes associated with rare honey bee species in Thailand and their antagonistic activity against plant pathogenic bacteria. Actinomycetes were selectively isolated from the black dwarf honey bee (Apis andreniformis). A total of 64 actinomycete isolates were obtained with Streptomyces as the predominant genus (84.4%) followed by Micromonospora (7.8%), Nonomuraea (4.7%) and Actinomadura (3.1%). All isolates were screened for antimicrobial activity against Xanthomonas campestris pv. campestris, Pectobacterium carotovorum and Pseudomonas syringae pv. sesame. Three isolates inhibited the growth of X. campestris pv. campestris during in vitro screening. The crude extracts of two isolates (ASC3-2 and ASC5-7P) had a minimum inhibitory concentration (MIC) of 128 mg L-1against X. campestris pv. campestris. For isolate ACZ2-27, its crude extract showed stronger inhibitory effect with a lower MIC value of 64 mg L-1 against X. campestris pv. campestris. These three active isolates were identified as members of the genus Streptomyces based on their 16S rRNA gene sequences. Phylogenetic analysis based on the maximum likelihood algorithm showed that isolate ACZ2-27, ASC3-2 and ASC5-7P were closely related to Streptomyces misionensis NBRC 13063T (99.71%), Streptomyces cacaoi subsp. cacaoi NBRC 12748T (100%) and Streptomyces puniceus NBRC 12811T (100%), respectively. In addition, representative isolates from non-Streptomyces groups were identified by 16S rRNA gene sequence analysis. High similarities were found with members of the genera Actinomadura, Micromonospora and Nonomuraea. Our study provides evidence of actinomycetes associated with the black dwarf honey bee including members of rare genera. Antimicrobial potential of these insect associated Streptomyces was also demonstrated especially the antibacterial activity against phytopathogenic bacteria.
Collapse
Affiliation(s)
- Yaowanoot Promnuan
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University –Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Saran Promsai
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University –Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sujinan Meelai
- Department of Microbiology, Faculty of Science, Silpakorn University –Sanam Chandra Palace campus, Nakhon Pathom, Nakhon Pathom, Thailand
| |
Collapse
|