1
|
Wang Y, You H, Kong YH, Sun C, Wu LH, Kim SG, Lee JS, Xu L, Xu XW. Genomic-based taxonomic classification of the order Sphingomonadales. Int J Syst Evol Microbiol 2025; 75. [PMID: 40372931 DOI: 10.1099/ijsem.0.006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
The order Sphingomonadales strains are globally distributed in various biomes and are renowned for their biodegradable and biosynthesis capabilities. At present, it consists of 4 families and 49 genera making it the third largest order within the class Alphaproteobacteria. However, their taxonomy remains complex, especially due to polyphyly in the family Sphingomonadaceae. In this study, we collected 429 Sphingomonadales type strain genomes, reconstructed robust phylogenomic relationships, and proposed delineation thresholds at the genus and family levels based on average amino acid identities (AAI) and evolutionary distances (ED). Based on the maximum-likelihood and Bayesian phylogenomic trees reconstructed by two molecular sets determined by orthologous sequence identity and the Genome Taxonomy Database, the consensus degree values were all higher than 90%, revealing that those phylogenomic trees had similar topological structures. By confirming monophyletic taxa and determining stable nodes, we reclassified the order Sphingomonadales into thirteen families including nine novel ones. AAI calculations indicated that the average intra-family AAI values ranged from 0.62 to 0.84, while inter-family ones were 0.51 to 0.60. ED summaries demonstrated that the average and median intra-family ED values were 0.16 to 0.57, and inter-family ones ranged from 0.50 to 1.22. Comparisons of AAI and ED values calculated by using genomic and phylogenetic analyses supported that those 13 families were significantly separated with p values < 2.2×10-16. Thus, it was speculated that the AAI and ED thresholds for distinguishing different families were <0.6 and >0.5, respectively. Additionally, we reclassified 163 species into new genera with their phylogenetic topologies, according to the previous genus AAI and ED boundaries of 0.7 and 0.4. Our study is the first genomic-based study of the order Sphingomonadales and will promote further insights into the evolution of this order.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Hao You
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Yan-Hui Kong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin-Huan Wu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue-Wei Xu
- National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, PR China
| |
Collapse
|
2
|
Lopez Marin MA, Suman J, Jani K, Ulbrich P, Cajthaml T, Pajer P, Wolf J, Neumann-Schaal M, Strejcek M, Uhlik O. Pedomonas mirosovicensis gen. nov., sp. nov., a bacterium isolated from soil with the aid of Micrococcus luteus culture supernatant containing resuscitation-promoting factor. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An orange-golden iridescent culture, designated A1X5R2T, was isolated from a compost soil suspension which was amended with
Micrococcus luteus
NCTC 2665T culture supernatant. The cells were non-motile, Gram-stain-negative, 0.4–0.5 µm wide and 0.7–1.4 µm long. The 16S rRNA-based phylogenetic and whole-genome analyses revealed that strain A1X5R2T forms a distinct lineage within the family
Sphingosinicellaceae
and is closely related to members of the genus
Sphingoaurantiacus
(
S. capsulatus
, 93.04 % similarity, and
S. polygranulatus
, 92.77 %). The organism grew at 22–47 °C (optimal at 37 °C), salinity <3 % (optimal at 1.5 %) and at pH 7. The major respiratory quinone was ubiquinone-10, but a small quantity of ubiquinone-9 was also detected The major polyamine was homospermidine, but a small quantity of putrescine was also detected. The strain contained C18 : 1ω7c, C16 : 0, C16 : 1 ω7c and C18 : 0 as the major fatty acids. The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, sphingoglycolipid, diphosphatidylglycerol, two unidentified phospholipids and three unidentified amino lipids. The DNA G+C content was 64.9 mol%. According to the results of phylogenetic and phylogenomic analyses, as well as its physiological characteristics, strain A2X5R2T represents the type species of a novel genus within the family
Sphingosinicellaceae
. The name Pedomonas mirosovicensis gen. nov., sp. nov. is proposed, with the type strain being A1X5R2T (=NCCB 100839T=DSM 112829T).
Collapse
Affiliation(s)
- Marco A. Lopez Marin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague, Czech Republic
| | - Kunal Jani
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, U Vojenske nemocnice 1200, 169 02, Prague, Czech Republic
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7 B, 38124, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7 B, 38124, Braunschweig, Germany
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague, Czech Republic
| |
Collapse
|
3
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203. Int J Syst Evol Microbiol 2022; 72. [PMID: 35108178 DOI: 10.1099/ijsem.0.005167] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|