1
|
Wu X, Feng Z, Liu Y, Qin Y, Yang T, Duan J. Enhanced safety prediction of vault settlement in urban tunnels using the pair-copula and bayesian network. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Establishing Coupled Models for Estimating Daily Dew Point Temperature Using Nature-Inspired Optimization Algorithms. HYDROLOGY 2022. [DOI: 10.3390/hydrology9010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potential of a classic adaptive neuro-fuzzy inference system (ANFIS) was evaluated in the current study for estimating the daily dew point temperature (Tdew). The study area consists of two stations located in Iran, namely the Rasht and Urmia. The daily Tdew time series of the studied stations were modeled through the other effective variables comprising minimum air temperature (Tmin), extraterrestrial radiation (Ra), vapor pressure deficit (VPD), sunshine duration (n), and relative humidity (RH). The correlation coefficients between the input and output parameters were utilized to determine the most effective inputs. Furthermore, novel hybrid models were proposed in this study in order to increase the estimation accuracy of Tdew. For this purpose, two optimization algorithms named bee colony optimization (BCO) and dragonfly algorithm (DFA) were coupled on the classic ANFIS. It was concluded that the hybrid models (i.e., ANFIS-BCO and ANFIS-DFA) demonstrated better performances compared to the classic ANFIS. The full-input pattern of the coupled models, specifically the ANFIS-DFA, was found to present the most accurate results for both the selected stations. Therefore, the developed hybrid models can be proposed as alternatives to the classic ANFIS to accurately estimate the daily Tdew.
Collapse
|
3
|
Metaheuristic Ensemble Pruning via Greedy-based Optimization Selection. INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING 2022. [DOI: 10.4018/ijamc.292501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ensemble selection is a crucial problem for ensemble learning (EL) to speed up the predictive model, reduce the storage space requirements and to further improve prediction accuracy. Diversity among individual predictors is widely recognized as a key factor to successful ensemble selection (ES), while the ultimate goal of ES is to improve its predictive accuracy and generalization of the ensemble. Motivated by the problems stated in previous, we have devised a novel hybrid layered based greedy ensemble reduction (HLGER) architecture to delete the predictor with lowest accuracy and diversity with evaluation function according to the diversity metrics. Experimental investigations are conducted based on benchmark time series data sets, support vectors regression algorithm utilized as base learner to generate homogeneous ensemble, HLGER uses locally weight ensemble (LWE) strategies to provide a final ensemble prediction. The experimental results demonstrate that, in comparison with benchmark ensemble pruning techniques, HLGER achieves significantly superior generalization performance.
Collapse
|
4
|
Kernel Extreme Learning Machine: An Efficient Model for Estimating Daily Dew Point Temperature Using Weather Data. WATER 2020. [DOI: 10.3390/w12092600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accurate estimation of dew point temperature (Tdew) has a crucial role in sustainable water resource management. This study investigates kernel extreme learning machine (KELM), boosted regression tree (BRT), radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN), and multivariate adaptive regression spline (MARS) models for daily dew point temperature estimation at Durham and UC Riverside stations in the United States. Daily time scale measured hydrometeorological data, including wind speed (WS), maximum air temperature (TMAX), minimum air temperature (TMIN), maximum relative humidity (RHMAX), minimum relative humidity (RHMIN), vapor pressure (VP), soil temperature (ST), solar radiation (SR), and dew point temperature (Tdew) were utilized to investigate the applied predictive models. Results of the KELM model were compared with other models using eight different input combinations with respect to root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) statistical indices. Results showed that the KELM models, using three input parameters, VP, TMAX, and RHMIN, with RMSE = 0.419 °C, NSE = 0.995, and R2 = 0.995 at Durham station, and seven input parameters, VP, ST, RHMAX, TMIN, RHMIN, TMAX, and WS, with RMSE = 0.485 °C, NSE = 0.994, and R2 = 0.994 at UC Riverside station, exhibited better performance in the modeling of daily Tdew. Finally, it was concluded from a comparison of the results that out of the five models applied, the KELM model was found to be the most robust by improving the performance of BRT, RBFNN, MLPNN, and MARS models in the testing phase at both stations.
Collapse
|
5
|
Dew Point Temperature Estimation: Application of Artificial Intelligence Model Integrated with Nature-Inspired Optimization Algorithms. WATER 2019. [DOI: 10.3390/w11040742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dew point temperature (DPT) is known to fluctuate in space and time regardless of the climatic zone considered. The accurate estimation of the DPT is highly significant for various applications of hydro and agro–climatological researches. The current research investigated the hybridization of a multilayer perceptron (MLP) neural network with nature-inspired optimization algorithms (i.e., gravitational search (GSA) and firefly (FFA)) to model the DPT of two climatically contrasted (humid and semi-arid) regions in India. Daily time scale measured weather information, such as wet bulb temperature (WBT), vapor pressure (VP), relative humidity (RH), and dew point temperature, was used to build the proposed predictive models. The efficiencies of the proposed hybrid MLP networks (MLP–FFA and MLP–GSA) were authenticated against standard MLP tuned by a Levenberg–Marquardt back-propagation algorithm, extreme learning machine (ELM), and support vector machine (SVM) models. Statistical evaluation metrics such as Nash Sutcliffe efficiency (NSE), root mean square error (RMSE), and mean absolute error (MAE) were used to validate the model efficiency. The proposed hybrid MLP models exhibited excellent estimation accuracy. The hybridization of MLP with nature-inspired optimization algorithms boosted the estimation accuracy that is clearly owing to the tuning robustness. In general, the applied methodology showed very convincing results for both inspected climate zones.
Collapse
|
6
|
|
7
|
Son LH, Thong PH. Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. APPL INTELL 2016. [DOI: 10.1007/s10489-016-0811-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
|