1
|
V AC, B SK, Pradeep S, Suraksha P, Lin M. Leveraging compact convolutional transformers for enhanced COVID-19 detection in chest X-rays: a grad-CAM visualization approach. Front Big Data 2024; 7:1489020. [PMID: 39736985 PMCID: PMC11683681 DOI: 10.3389/fdata.2024.1489020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
- Aravinda C. V
- Department of Computer Science and Engineering, NITTE Mahalinga Adyantaya Memorial Institute of Technology, NITTE Deemed to Be University, Karkala, Karnataka, India
| | - Sudeepa K. B
- Department of Computer Science and Engineering, NITTE Mahalinga Adyantaya Memorial Institute of Technology, NITTE Deemed to Be University, Karkala, Karnataka, India
| | - S. Pradeep
- Department of Computer Science and Engineering, Government Engineering College, Chamarajanagar, Karnataka, India
| | - P. Suraksha
- Department of Computer Science and Engineering, Vidhya Vardhaka College of Engineering, Mysore, Karnataka, India
| | - Meng Lin
- Department of Electronic and Computer Engineering (The Graduate School of Science and Engineering), Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
2
|
Singh A, Gopi VP, Thomas A. WAVELET-POOLING-BASED MULTI-SCALE CNN FOR COVID-19 DETECTION FROM CT IMAGES. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2024; 36. [DOI: 10.4015/s1016237224500352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
COVID-19 is a respiratory disease affecting humans and animals. The disease has rapidly spread worldwide and became a pandemic in 2020. Preventing the virus from spreading has become increasingly challenging, especially with the need to test potential suspects rapidly. Deep learning-based methods have been developed to address this challenge of detecting COVID-19 from chest Computed Tomography (CT) images. The proposed network has multi-scale feature extraction layers with wavelet pooling. Learning features at different scales will enable the architecture to explore local patterns at different dimensions. So, in the proposed architecture, we have included a multi-scale convolutional layer to focus on sparse local regions about the disease conditions. Texture-based feature learning using wavelet pooling is incorporated into the architecture to improve detection performance. The proposed network achieved an accuracy of 99.79% with an AUC value of 0.9999. Compared with the existing methods, the proposed network has a lower computational cost regarding learnable parameters, FLOPS, and memory requirements. The proposed CNN model benefits from multi-scale structure and wavelet-pooling, resulting in superior performance compared to previous algorithms.
Collapse
Affiliation(s)
- Alka Singh
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Varun P. Gopi
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Anju Thomas
- Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Rendon-Atehortua JC, Cardenas-Pena D, Daza-Santacoloma G, Orozco-Gutierrez AA, Jaramillo-Robledo O. Efficient Lung Segmentation from Chest Radiographs using Transfer Learning and Lightweight Deep Architecture. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039676 DOI: 10.1109/embc53108.2024.10782198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Lung delineation constitutes a critical preprocessing stage for X-ray-based diagnosis and follow-up. However, automatic lung segmentation from chest radiographs (CXR) poses a challenging problem due to anatomical structures' varying shapes and sizes, the differences between radio-opacity, contrast, and image quality, and the requirement of complex models for automatic detection of regions of interest. This work proposes the automated lung segmentation methodology DenseCX, based on U-Net architectures and transfer learning techniques. Unlike other U-Net networks, DenseCX includes an encoder built from Dense blocks, promoting a meaningful feature extraction with lightweight layers. Then, a homogeneous domain adaptation transfers the knowledge from classifying a large cohort of CXR to the DenseCX, reducing the overfitting risk due to the lack of manually labeled images. The experimental setup evaluates the proposed methodology on three public datasets, namely Shenzhen Hospital Chest X-ray, the Japan Society of Radiological Technology, and Montgomery County Chest X-ray, in a leave-one-group-out validation strategy for warranting the generalization. The attained Dice, Sensitivity, and Specificity metrics evidence that DenseCX outperforms other conventional ImageNet initialization while providing the best trade-off between performance and model complexity than state-of-the-art approaches, with a much lighter architecture and an improved convergence.
Collapse
|
4
|
Khagi B, Belousova T, Short CM, Taylor A, Nambi V, Ballantyne CM, Bismuth J, Shah DJ, Brunner G. A machine learning-based approach to identify peripheral artery disease using texture features from contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 2024; 106:31-42. [PMID: 38065273 PMCID: PMC11728603 DOI: 10.1016/j.mri.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Diagnosing and assessing the risk of peripheral artery disease (PAD) has long been a focal point for medical practitioners. The impaired blood circulation in PAD patients results in altered microvascular perfusion patterns in the calf muscles which is the primary location of intermittent claudication pain. Consequently, we hypothesized that changes in perfusion and increase in connective tissue could lead to alterations in the appearance or texture patterns of the skeletal calf muscles, as visualized with non-invasive imaging techniques. We designed an automatic pipeline for textural feature extraction from contrast-enhanced magnetic resonance imaging (CE-MRI) scans and used the texture features to train machine learning models to detect the heterogeneity in the muscle pattern among PAD patients and matched controls. CE-MRIs from 36 PAD patients and 20 matched controls were used for preparing training and testing data at a 7:3 ratio with cross-validation (CV) techniques. We employed feature arrangement and selection methods to optimize the number of features. The proposed method achieved a peak accuracy of 94.11% and a mean testing accuracy of 84.85% in a 2-class classification approach (controls vs. PAD). A three-class classification approach was performed to identify a high-risk PAD sub-group which yielded an average test accuracy of 83.23% (matched controls vs. PAD without diabetes vs. PAD with diabetes). Similarly, we obtained 78.60% average accuracy among matched controls, PAD treadmill exercise completers, and PAD exercise treadmill non-completers. Machine learning and imaging-based texture features may be of interest in the study of lower extremity ischemia.
Collapse
Affiliation(s)
- Bijen Khagi
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Tatiana Belousova
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Christina M Short
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Addison Taylor
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Vijay Nambi
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jean Bismuth
- Division of Vascular Surgery, USF Health Morsani School of Medicine, Tampa, FL, USA
| | - Dipan J Shah
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Gerd Brunner
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA; Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Ahoor A, Arif F, Sajid MZ, Qureshi I, Abbas F, Jabbar S, Abbas Q. MixNet-LD: An Automated Classification System for Multiple Lung Diseases Using Modified MixNet Model. Diagnostics (Basel) 2023; 13:3195. [PMID: 37892016 PMCID: PMC10606171 DOI: 10.3390/diagnostics13203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The lungs are critical components of the respiratory system because they allow for the exchange of oxygen and carbon dioxide within our bodies. However, a variety of conditions can affect the lungs, resulting in serious health consequences. Lung disease treatment aims to control its severity, which is usually irrevocable. The fundamental objective of this endeavor is to build a consistent and automated approach for establishing the intensity of lung illness. This paper describes MixNet-LD, a unique automated approach aimed at identifying and categorizing the severity of lung illnesses using an upgraded pre-trained MixNet model. One of the first steps in developing the MixNet-LD system was to build a pre-processing strategy that uses Grad-Cam to decrease noise, highlight irregularities, and eventually improve the classification performance of lung illnesses. Data augmentation strategies were used to rectify the dataset's unbalanced distribution of classes and prevent overfitting. Furthermore, dense blocks were used to improve classification outcomes across the four severity categories of lung disorders. In practice, the MixNet-LD model achieves cutting-edge performance while maintaining model size and manageable complexity. The proposed approach was tested using a variety of datasets gathered from credible internet sources as well as a novel private dataset known as Pak-Lungs. A pre-trained model was used on the dataset to obtain important characteristics from lung disease images. The pictures were then categorized into categories such as normal, COVID-19, pneumonia, tuberculosis, and lung cancer using a linear layer of the SVM classifier with a linear activation function. The MixNet-LD system underwent testing in four distinct tests and achieved a remarkable accuracy of 98.5% on the difficult lung disease dataset. The acquired findings and comparisons demonstrate the MixNet-LD system's improved performance and learning capabilities. These findings show that the proposed approach may effectively increase the accuracy of classification models in medicinal image investigations. This research helps to develop new strategies for effective medical image processing in clinical settings.
Collapse
Affiliation(s)
- Ayesha Ahoor
- Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (F.A.); (M.Z.S.)
| | - Fahim Arif
- Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (F.A.); (M.Z.S.)
| | - Muhammad Zaheer Sajid
- Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (F.A.); (M.Z.S.)
| | - Imran Qureshi
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (S.J.); (Q.A.)
| | - Fakhar Abbas
- Centre for Trusted Internet and Community, National University of Singapore (NUS), Singapore 119228, Singapore;
| | - Sohail Jabbar
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (S.J.); (Q.A.)
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (S.J.); (Q.A.)
| |
Collapse
|
6
|
Ukwuoma CC, Cai D, Heyat MBB, Bamisile O, Adun H, Al-Huda Z, Al-Antari MA. Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images. JOURNAL OF KING SAUD UNIVERSITY. COMPUTER AND INFORMATION SCIENCES 2023; 35:101596. [PMID: 37275558 PMCID: PMC10211254 DOI: 10.1016/j.jksuci.2023.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
COVID-19 is a contagious disease that affects the human respiratory system. Infected individuals may develop serious illnesses, and complications may result in death. Using medical images to detect COVID-19 from essentially identical thoracic anomalies is challenging because it is time-consuming, laborious, and prone to human error. This study proposes an end-to-end deep-learning framework based on deep feature concatenation and a Multi-head Self-attention network. Feature concatenation involves fine-tuning the pre-trained backbone models of DenseNet, VGG-16, and InceptionV3, which are trained on a large-scale ImageNet, whereas a Multi-head Self-attention network is adopted for performance gain. End-to-end training and evaluation procedures are conducted using the COVID-19_Radiography_Dataset for binary and multi-classification scenarios. The proposed model achieved overall accuracies (96.33% and 98.67%) and F1_scores (92.68% and 98.67%) for multi and binary classification scenarios, respectively. In addition, this study highlights the difference in accuracy (98.0% vs. 96.33%) and F_1 score (97.34% vs. 95.10%) when compared with feature concatenation against the highest individual model performance. Furthermore, a virtual representation of the saliency maps of the employed attention mechanism focusing on the abnormal regions is presented using explainable artificial intelligence (XAI) technology. The proposed framework provided better COVID-19 prediction results outperforming other recent deep learning models using the same dataset.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, China
| | - Dongsheng Cai
- The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, China
| | - Humphrey Adun
- Department of Mechanical and Energy Systems Engineering, Cyprus International University, Nicosia, North Nicosia, Cyprus
| | - Zaid Al-Huda
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
7
|
Sailunaz K, Özyer T, Rokne J, Alhajj R. A survey of machine learning-based methods for COVID-19 medical image analysis. Med Biol Eng Comput 2023; 61:1257-1297. [PMID: 36707488 PMCID: PMC9883138 DOI: 10.1007/s11517-022-02758-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches.
Collapse
Affiliation(s)
- Kashfia Sailunaz
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Tansel Özyer
- Department of Computer Engineering, Ankara Medipol University, Ankara, Turkey
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
- Department of Health Informatics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Singh A, Gopi VP, Thomas A, Singh O. DUAL-SCALE CNN ARCHITECTURE FOR COVID-19 DETECTION FROM LUNG CT IMAGES. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2023; 35. [DOI: 10.4015/s1016237223500126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Coronavirus Disease 2019 (COVID-19) is a terrible illness affecting the respiratory systems of animals and humans. By 2020, this sickness had become a pandemic, affecting millions worldwide. Prevention of the spread of the virus by conducting fast tests for many suspects has become difficult. Recently, many deep learning-based methods have been developed to automatically detect COVID-19 infection from lung Computed Tomography (CT) images of the chest. This paper proposes a novel dual-scale Convolutional Neural Network (CNN) architecture to detect COVID-19 from CT images. The network consists of two different convolutional blocks. Each path is similarly constructed with multi-scale feature extraction layers. The primary path consists of six convolutional layers. The extracted features from multipath networks are flattened with the help of dropout, and these relevant features are concatenated. The sigmoid function is used as the classifier to identify whether the input image is diseased. The proposed network obtained an accuracy of 99.19%, with an Area Under the Curve (AUC) value of 0.99. The proposed network has a lower computational cost than the existing methods regarding learnable parameters, the number of FLOPS, and memory requirements. The proposed CNN model inherits the benefits of densely linked paths and residuals by utilizing effective feature reuse methods. According to our experiments, the proposed approach outperforms previous algorithms and achieves state-of-the-art results.
Collapse
Affiliation(s)
- Alka Singh
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Varun P. Gopi
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Anju Thomas
- Sensor & Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Omkar Singh
- Director, Andaman & Nicobar Islands, Institute of Medical Sciences (ANIIMS), Atlanta Point, Port Blair, India
| |
Collapse
|
9
|
Sarp S, Catak FO, Kuzlu M, Cali U, Kusetogullari H, Zhao Y, Ates G, Guler O. An XAI approach for COVID-19 detection using transfer learning with X-ray images. Heliyon 2023; 9:e15137. [PMID: 37041935 PMCID: PMC10080863 DOI: 10.1016/j.heliyon.2023.e15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/19/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
The coronavirus disease (COVID-19) has continued to cause severe challenges during this unprecedented time, affecting every part of daily life in terms of health, economics, and social development. There is an increasing demand for chest X-ray (CXR) scans, as pneumonia is the primary and vital complication of COVID-19. CXR is widely used as a screening tool for lung-related diseases due to its simple and relatively inexpensive application. However, these scans require expert radiologists to interpret the results for clinical decisions, i.e., diagnosis, treatment, and prognosis. The digitalization of various sectors, including healthcare, has accelerated during the pandemic, with the use and importance of Artificial Intelligence (AI) dramatically increasing. This paper proposes a model using an Explainable Artificial Intelligence (XAI) technique to detect and interpret COVID-19 positive CXR images. We further analyze the impact of COVID-19 positive CXR images using heatmaps. The proposed model leverages transfer learning and data augmentation techniques for faster and more adequate model training. Lung segmentation is applied to enhance the model performance further. We conducted a pre-trained network comparison with the highest classification performance (F1-Score: 98%) using the ResNet model.
Collapse
Affiliation(s)
- Salih Sarp
- Electrical & Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ferhat Ozgur Catak
- Department of Electrical Engineering & Computer Science, University of Stavanger, Rogaland, Norway
| | - Murat Kuzlu
- Old Dominion University, Batten College of Engineering & Technology, Norfolk, VA, USA
| | - Umit Cali
- Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Huseyin Kusetogullari
- Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Yanxiao Zhao
- Electrical & Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gungor Ates
- Department of Pulmonary Medicine, Private Genesis Hospital, Diyarbakir, Turkey
| | | |
Collapse
|
10
|
A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. ALEXANDRIA ENGINEERING JOURNAL 2023; 64:923-935. [PMCID: PMC9626367 DOI: 10.1016/j.aej.2022.10.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
In 2019, the world experienced the rapid outbreak of the Covid-19 pandemic creating an alarming situation worldwide. The virus targets the respiratory system causing pneumonia with other symptoms such as fatigue, dry cough, and fever which can be mistakenly diagnosed as pneumonia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical since the disease can provoke patients’ mortality. Chest X-ray (CXR) is commonly employed in healthcare sector where both quick and precise diagnosis can be supplied. Deep learning algorithms have proved extraordinary capabilities in terms of lung diseases detection and classification. They facilitate and expedite the diagnosis process and save time for the medical practitioners. In this paper, a deep learning (DL) architecture for multi-class classification of Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is proposed. Tremendous CXR images of 3615 COVID-19, 6012 Lung opacity, 5870 Pneumonia, 20,000 lung cancer, 1400 tuberculosis, and 10,192 normal images were resized, normalized, and randomly split to fit the DL requirements. In terms of classification, we utilized a pre-trained model, VGG19 followed by three blocks of convolutional neural network (CNN) as a feature extraction and fully connected network at the classification stage. The experimental results revealed that our proposed VGG19 + CNN outperformed other existing work with 96.48 % accuracy, 93.75 % recall, 97.56 % precision, 95.62 % F1 score, and 99.82 % area under the curve (AUC). The proposed model delivered superior performance allowing healthcare practitioners to diagnose and treat patients more quickly and efficiently.
Collapse
|
11
|
Kanjanasurat I, Tenghongsakul K, Purahong B, Lasakul A. CNN-RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images. SENSORS (BASEL, SWITZERLAND) 2023; 23:1356. [PMID: 36772394 PMCID: PMC9919640 DOI: 10.3390/s23031356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The 2019 coronavirus disease (COVID-19) has rapidly spread across the globe. It is crucial to identify positive cases as rapidly as humanely possible to provide appropriate treatment for patients and prevent the pandemic from spreading further. Both chest X-ray and computed tomography (CT) images are capable of accurately diagnosing COVID-19. To distinguish lung illnesses (i.e., COVID-19 and pneumonia) from normal cases using chest X-ray and CT images, we combined convolutional neural network (CNN) and recurrent neural network (RNN) models by replacing the fully connected layers of CNN with a version of RNN. In this framework, the attributes of CNNs were utilized to extract features and those of RNNs to calculate dependencies and classification base on extracted features. CNN models VGG19, ResNet152V2, and DenseNet121 were combined with long short-term memory (LSTM) and gated recurrent unit (GRU) RNN models, which are convenient to develop because these networks are all available as features on many platforms. The proposed method is evaluated using a large dataset totaling 16,210 X-ray and CT images (5252 COVID-19 images, 6154 pneumonia images, and 4804 normal images) were taken from several databases, which had various image sizes, brightness levels, and viewing angles. Their image quality was enhanced via normalization, gamma correction, and contrast-limited adaptive histogram equalization. The ResNet152V2 with GRU model achieved the best architecture with an accuracy of 93.37%, an F1 score of 93.54%, a precision of 93.73%, and a recall of 93.47%. From the experimental results, the proposed method is highly effective in distinguishing lung diseases. Furthermore, both CT and X-ray images can be used as input for classification, allowing for the rapid and easy detection of COVID-19.
Collapse
Affiliation(s)
| | - Kasi Tenghongsakul
- School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Boonchana Purahong
- School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Attasit Lasakul
- School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
12
|
Vinod DN, Prabaharan SRS. COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2667-2682. [PMID: 36685135 PMCID: PMC9843670 DOI: 10.1007/s11831-023-09882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/05/2023] [Indexed: 05/29/2023]
Abstract
The absolute previously infected novel coronavirus (COVID-19) was found in Wuhan, China, in December 2019. The COVID-19 epidemic has spread to more than 220 nations and territories globally and has altogether influenced each part of our day-to-day lives. As of 9th March 2022, a total aggregate of 44,78,82,185 (60,07,317) contaminated (dead) COVID-19 cases were accounted for all over the world. The quantities of contaminated cases passing despite everything increment essentially and do not indicate a controlled circumstance. The scope of this paper is to address this issue by presenting a comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts. The paper provides, firstly, an overview of COVID-19 infection and highlights of this article; Secondly, an overview of exploring various executive innovations by utilizing different resources to stop the spread of COVID-19; Thirdly, a comparison of existing predicting methods of COVID-19 in the literature, with focus on ML, DL and AI-driven techniques with performance metrics; and finally, a discussion on the results of the work as well as future scope.
Collapse
Affiliation(s)
- Dasari Naga Vinod
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600062 India
| | - S. R. S. Prabaharan
- Sathyabama Centre for Advanced Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu 600119 India
| |
Collapse
|
13
|
Cao Z, Huang J, He X, Zong Z. BND-VGG-19: A deep learning algorithm for COVID-19 identification utilizing X-ray images. Knowl Based Syst 2022; 258:110040. [PMID: 36284666 PMCID: PMC9585896 DOI: 10.1016/j.knosys.2022.110040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
During the past two years, a highly infectious virus known as COVID-19 has been damaging and harming the health of people all over the world. Simultaneously, the number of patients is rising in various countries, with many new cases appearing daily, posing a significant challenge to hospital medical staff. It is necessary to improve the efficiency of virus detection. To this end, we combine modern technology and visual assistance to detect COVID-19. Based on the above facts, for accurate and rapid identification of infected persons, the BND-VGG-19 method was proposed. This method is based on VGG-19 and further incorporates batch normalization and dropout layers between the layers to improve network accuracy. Then, the COVID-19 dataset including viral pneumonia, COVID-19, and normal X-ray images, are used to diagnose lung abnormalities and test the performance of the proposed algorithm. The experimental results show the superiority of BND-VGG-19 with a 95.48% accuracy rate compared with existing COVID-19 diagnostic methods.
Collapse
Affiliation(s)
- Zili Cao
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Junjian Huang
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China,Corresponding author
| | - Xing He
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhaowen Zong
- Department of Training Base for Health Care, Army Medical University, Chongqing 400038, PR China
| |
Collapse
|
14
|
Phung KA, Nguyen TT, Wangad N, Baraheem S, Vo ND, Nguyen K. Disease Recognition in X-ray Images with Doctor Consultation-Inspired Model. J Imaging 2022; 8:jimaging8120323. [PMID: 36547488 PMCID: PMC9786084 DOI: 10.3390/jimaging8120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The application of chest X-ray imaging for early disease screening is attracting interest from the computer vision and deep learning community. To date, various deep learning models have been applied in X-ray image analysis. However, models perform inconsistently depending on the dataset. In this paper, we consider each individual model as a medical doctor. We then propose a doctor consultation-inspired method that fuses multiple models. In particular, we consider both early and late fusion mechanisms for consultation. The early fusion mechanism combines the deep learned features from multiple models, whereas the late fusion method combines the confidence scores of all individual models. Experiments on two X-ray imaging datasets demonstrate the superiority of the proposed method relative to baseline. The experimental results also show that early consultation consistently outperforms the late consultation mechanism in both benchmark datasets. In particular, the early doctor consultation-inspired model outperforms all individual models by a large margin, i.e., 3.03 and 1.86 in terms of accuracy in the UIT COVID-19 and chest X-ray datasets, respectively.
Collapse
Affiliation(s)
- Kim Anh Phung
- Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
| | - Thuan Trong Nguyen
- Faculty of Software Engineering, University of Information Technology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Nileshkumar Wangad
- Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
| | - Samah Baraheem
- Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
| | - Nguyen D. Vo
- Faculty of Software Engineering, University of Information Technology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Khang Nguyen
- Faculty of Software Engineering, University of Information Technology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
- Correspondence:
| |
Collapse
|
15
|
Ukwuoma CC, Qin Z, Agbesi VK, Ejiyi CJ, Bamisile O, Chikwendu IA, Tienin BW, Hossin MA. LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images. Comput Biol Med 2022; 150:106195. [PMID: 37859288 PMCID: PMC9561436 DOI: 10.1016/j.compbiomed.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
Abstract
According to the World Health Organization, an estimate of more than five million infections and 355,000 deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Various researchers have developed interesting and effective deep learning frameworks to tackle this disease. However, poor feature extraction from the Chest X-ray images and the high computational cost of the available models impose difficulties to an accurate and fast Covid-19 detection framework. Thus, the major purpose of this study is to offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally expensive than earlier research. To achieve the specified goal, we explored the Inception V3 deep artificial neural network. This study proposed LCSB-Inception; a two-path (L and AB channel) Inception V3 network along the first three convolutional layers. The RGB input image is first transformed to CIE LAB coordinates (L channel which is aimed at learning the textural and edge features of the Chest X-Ray and AB channel which is aimed at learning the color variations of the Chest X-ray images). The L achromatic channel and the AB channels filters are set to 50%L-50%AB. This method saves between one-third and one-half of the parameters in the divided branches. We further introduced a global second-order pooling at the last two convolutional blocks for more robust image feature extraction against the conventional max-pooling. The detection accuracy of the LCSB-Inception is further improved by employing the Contrast Limited Adaptive Histogram Equalization (CLAHE) image enhancement technique on the input image before feeding them to the network. The proposed LCSB-Inception network is experimented on using two loss functions (Categorically smooth loss and categorically Cross-entropy) and two learning rates whereas Accuracy, Precision, Sensitivity, Specificity F1-Score, and AUC Score were used for evaluation via the chestX-ray-15k (Data_1) and COVID-19 Radiography dataset (Data_2). The proposed models produced an acceptable outcome with an accuracy of 0.97867 (Data_1) and 0.98199 (Data_2) according to the experimental findings. In terms of COVID-19 identification, the suggested models outperform conventional deep learning models and other state-of-the-art techniques presented in the literature based on the results.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China.
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China.
| | - Victor Kwaku Agbesi
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Chukwuebuka J Ejiyi
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, Chenghua District, Chengdu, Sichuan, PR China
| | - Ijeoma A Chikwendu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Bole W Tienin
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Md Altab Hossin
- School of Innovation and Entrepreneurship, Chengdu University, No. 2025, Chengluo Avenue, 610106, Chengdu, Sichuan, PR China
| |
Collapse
|
16
|
Shibu George G, Raj Mishra P, Sinha P, Ranjan Prusty M. COVID-19 Detection on Chest X-Ray Images Using Homomorphic Transformation and VGG Inspired Deep Convolutional Neural Network. Biocybern Biomed Eng 2022; 43:1-16. [PMID: 36447948 PMCID: PMC9684127 DOI: 10.1016/j.bbe.2022.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
COVID-19 had caused the whole world to come to a standstill. The current detection methods are time consuming as well as costly. Using Chest X-rays (CXRs) is a solution to this problem, however, manual examination of CXRs is a cumbersome and difficult process needing specialization in the domain. Most of existing methods used for this application involve the usage of pretrained models such as VGG19, ResNet, DenseNet, Xception, and EfficeintNet which were trained on RGB image datasets. X-rays are fundamentally single channel images, hence using RGB trained model is not appropriate since it increases the operations by involving three channels instead of one. A way of using pretrained model for grayscale images is by replicating the one channel image data to three channel which introduces redundancy and another way is by altering the input layer of pretrained model to take in one channel image data, which comprises the weights in the forward layers that were trained on three channel images which weakens the use of pre-trained weights in a transfer learning approach. A novel approach for identification of COVID-19 using CXRs, Contrast Limited Adaptive Histogram Equalization (CLAHE) along with Homomorphic Transformation Filter which is used to process the pixel data in images and extract features from the CXRs is suggested in this paper. These processed images are then provided as input to a VGG inspired deep Convolutional Neural Network (CNN) model which takes one channel image data as input (grayscale images) to categorize CXRs into three class labels, namely, No-Findings, COVID-19, and Pneumonia. Evaluation of the suggested model is done with the help of two publicly available datasets; one to obtain COVID-19 and No-Finding images and the other to obtain Pneumonia CXRs. The dataset comprises 6750 images in total; 2250 images for each class. Results obtained show that the model has achieved 96.56% for multi-class classification and 98.06% accuracy for binary classification using 5-fold stratified cross validation (CV) method. This result is competitive and up to the mark when compared with the performance shown by existing approaches for COVID-19 classification.
Collapse
Affiliation(s)
- Gerosh Shibu George
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Pratyush Raj Mishra
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Panav Sinha
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Manas Ranjan Prusty
- Centre for Cyber Physical Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| |
Collapse
|
17
|
Wang Y, Hargreaves CA. A Review Study of the Deep Learning Techniques used for the Classification of Chest Radiological Images for COVID-19 Diagnosis. INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT DATA INSIGHTS 2022. [PMCID: PMC9294035 DOI: 10.1016/j.jjimei.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the fight against COVID-19, the immediate and accurate screening of infected patients is of great significance. Chest X-Ray (CXR) and Computed Tomography (CT) screening play an important role in the diagnosis of COVID-19. Studies showed that changes occur in Chest Radiological images before the beginning of COVID-19 symptoms for some patients, and the symptoms of COVID-19 and other lung diseases can be similar in their very early stages. Further, it is crucial to effectively distinguish COVID-19 patients from healthy people, and patients with other lung diseases as soon as possible, otherwise inaccurate diagnosis may expose more people to the coronavirus. Many researchers have developed end-to-end deep learning techniques for the classification of COVID-19 patients without manual feature engineering. In this paper, we review the different deep learning techniques that have been used to analyze Chest X-Ray and Computed Tomography scans to classify patients with Covid-19. In addition, we also summarize the common public datasets, challenges, limitations, and possible future work. This review paper is extremely valuable as it confirms that (1) Deep Learning models are effective in classifying chest X-Ray images provided the training dataset is sufficiently large. (2) Data augmentation and generative adversarial networks (GANs) solve the small training dataset problem. (3) Transfer learning methods greatly enhanced the extraction and selection of features that were important for chest image classification. (4) Hyperparameter tuning was valuable for increasing the deep learning model accuracies to generally more than 97%. Our review study helps new researchers identify the gaps and opportunities for further or new research.
Collapse
|
18
|
Sinwar D, Dhaka VS, Tesfaye BA, Raghuwanshi G, Kumar A, Maakar SK, Agrawal S. Artificial Intelligence and Deep Learning Assisted Rapid Diagnosis of COVID-19 from Chest Radiographical Images: A Survey. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1306664. [PMID: 36304775 PMCID: PMC9581633 DOI: 10.1155/2022/1306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023]
Abstract
Artificial Intelligence (AI) has been applied successfully in many real-life domains for solving complex problems. With the invention of Machine Learning (ML) paradigms, it becomes convenient for researchers to predict the outcome based on past data. Nowadays, ML is acting as the biggest weapon against the COVID-19 pandemic by detecting symptomatic cases at an early stage and warning people about its futuristic effects. It is observed that COVID-19 has blown out globally so much in a short period because of the shortage of testing facilities and delays in test reports. To address this challenge, AI can be effectively applied to produce fast as well as cost-effective solutions. Plenty of researchers come up with AI-based solutions for preliminary diagnosis using chest CT Images, respiratory sound analysis, voice analysis of symptomatic persons with asymptomatic ones, and so forth. Some AI-based applications claim good accuracy in predicting the chances of being COVID-19-positive. Within a short period, plenty of research work is published regarding the identification of COVID-19. This paper has carefully examined and presented a comprehensive survey of more than 110 papers that came from various reputed sources, that is, Springer, IEEE, Elsevier, MDPI, arXiv, and medRxiv. Most of the papers selected for this survey presented candid work to detect and classify COVID-19, using deep-learning-based models from chest X-Rays and CT scan images. We hope that this survey covers most of the work and provides insights to the research community in proposing efficient as well as accurate solutions for fighting the pandemic.
Collapse
Affiliation(s)
- Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Biniyam Alemu Tesfaye
- Department of Computer Science, College of Informatics, Bule Hora University, Bule Hora, Ethiopia
| | - Ghanshyam Raghuwanshi
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Ashish Kumar
- Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, India
| | - Sunil Kr. Maakar
- School of Computing Science & Engineering, Galgotias University, Greater Noida, India
| | - Sanjay Agrawal
- Department of Electrical Engineering, Rajkiya Engineering College, Akbarpur, Ambedkar Nagar, India
| |
Collapse
|
19
|
Benabdallah FZ, Djerou L. Active Contour Extension Basing on Haralick Texture Features, Multi-gene Genetic Programming, and Block Matching to Segment Thyroid in 3D Ultrasound Images. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Bhosale YH, Patnaik KS. Application of Deep Learning Techniques in Diagnosis of Covid-19 (Coronavirus): A Systematic Review. Neural Process Lett 2022; 55:1-53. [PMID: 36158520 PMCID: PMC9483290 DOI: 10.1007/s11063-022-11023-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
Abstract
Covid-19 is now one of the most incredibly intense and severe illnesses of the twentieth century. Covid-19 has already endangered the lives of millions of people worldwide due to its acute pulmonary effects. Image-based diagnostic techniques like X-ray, CT, and ultrasound are commonly employed to get a quick and reliable clinical condition. Covid-19 identification out of such clinical scans is exceedingly time-consuming, labor-intensive, and susceptible to silly intervention. As a result, radiography imaging approaches using Deep Learning (DL) are consistently employed to achieve great results. Various artificial intelligence-based systems have been developed for the early prediction of coronavirus using radiography pictures. Specific DL methods such as CNN and RNN noticeably extract extremely critical characteristics, primarily in diagnostic imaging. Recent coronavirus studies have used these techniques to utilize radiography image scans significantly. The disease, as well as the present pandemic, was studied using public and private data. A total of 64 pre-trained and custom DL models concerning imaging modality as taxonomies are selected from the studied articles. The constraints relevant to DL-based techniques are the sample selection, network architecture, training with minimal annotated database, and security issues. This includes evaluating causal agents, pathophysiology, immunological reactions, and epidemiological illness. DL-based Covid-19 detection systems are the key focus of this review article. Covid-19 work is intended to be accelerated as a result of this study.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| | - K. Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| |
Collapse
|
21
|
Sharma A, Mishra PK. Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:42649-42690. [PMID: 35938148 PMCID: PMC9340712 DOI: 10.1007/s11042-022-13486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of novel coronavirus (COVID-19) disease has infected more than 135.6 million people globally. For its early diagnosis, researchers consider chest X-ray examinations as a standard screening technique in addition to RT-PCR test. Majority of research work till date focused only on application of deep learning approaches that is relevant but lacking in better pre-processing of CXR images. Towards this direction, this study aims to explore cumulative effects of image denoising and enhancement approaches on the performance of deep learning approaches. Regarding pre-processing, suitable methods for X-ray images, Histogram equalization, CLAHE and gamma correction have been tested individually and along with adaptive median filter, median filter, total variation filter and gaussian denoising filters. Proposed study compared eleven combinations in exploration of most coherent approach in greedy manner. For more robust analysis, we compared ten CNN architectures for performance evaluation with and without enhancement approaches. These models are InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, Vgg19, NASNetMobile, ResNet101, DenseNet121, DenseNet169, DenseNet201. These models are trained in 4-way (COVID-19 pneumonia vs Viral vs Bacterial pneumonia vs Normal) and 3-way classification scenario (COVID-19 vs Pneumonia vs Normal) on two benchmark datasets. The proposed methodology determines with TVF + Gamma, models achieve higher classification accuracy and sensitivity. In 4-way classification MobileNet with TVF + Gamma achieves top accuracy of 93.25% with 1.91% improvement in accuracy score, COVID-19 sensitivity of 98.72% and F1-score of 92.14%. In 3-way classification our DenseNet201 with TVF + Gamma gains accuracy of 91.10% with improvement of 1.47%, COVID-19 sensitivity of 100% and F1-score of 91.09%. Proposed study concludes that deep learning modes with gamma correction and TVF + Gamma has superior performance compared to state-of-the-art models. This not only minimizes overlapping between COVID-19 and virus pneumonia but advantageous in time required to converge best possible results.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Pramod Kumar Mishra
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
22
|
Khalifa NEM, Manogaran G, Taha MHN, Loey M. A deep learning semantic segmentation architecture for COVID-19 lesions discovery in limited chest CT datasets. EXPERT SYSTEMS 2022; 39:e12742. [PMID: 34177038 PMCID: PMC8209878 DOI: 10.1111/exsy.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 05/10/2023]
Abstract
During the epidemic of COVID-19, Computed Tomography (CT) is used to help in the diagnosis of patients. Most current studies on this subject appear to be focused on broad and private annotated data which are impractical to access from an organization, particularly while radiologists are fighting the coronavirus disease. It is challenging to equate these techniques since they were built on separate datasets, educated on various training sets, and tested using different metrics. In this research, a deep learning semantic segmentation architecture for COVID-19 lesions detection in limited chest CT datasets will be presented. The proposed model architecture consists of the encoder and the decoder components. The encoder component contains three layers of convolution and pooling, while the decoder contains three layers of deconvolutional and upsampling. The dataset consists of 20 CT scans of lungs belongs to 20 patients from two sources of data. The total number of images in the dataset is 3520 CT scans with its labelled images. The dataset is split into 70% for the training phase and 30% for the testing phase. Images of the dataset are passed through the pre-processing phase to be resized and normalized. Five experimental trials are conducted through the research with different images selected for the training and the testing phases for every trial. The proposed model achieves 0.993 in the global accuracy, and 0.987, 0.799, 0.874 for weighted IoU, mean IoU and mean BF score accordingly. The performance metrics such as precision, sensitivity, specificity and F1 score strengthens the obtained results. The proposed model outperforms the related works which use the same dataset in terms of performance and IoU metrics.
Collapse
Affiliation(s)
- Nour Eldeen M. Khalifa
- Department of Information TechnologyFaculty of Computers & Artificial Intelligence, Cairo UniversityCairoEgypt
| | - Gunasekaran Manogaran
- University of CaliforniaDavisCaliforniaUSA
- College of Information and Electrical EngineeringAsia UniversityTaichungTaiwan
| | - Mohamed Hamed N. Taha
- Department of Information TechnologyFaculty of Computers & Artificial Intelligence, Cairo UniversityCairoEgypt
| | - Mohamed Loey
- Department of Computer Science, Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
| |
Collapse
|
23
|
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN COMPUTER SCIENCE 2022; 3:286. [PMID: 35578678 PMCID: PMC9096341 DOI: 10.1007/s42979-022-01184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.
Collapse
Affiliation(s)
- Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Asma Benmessaoud Gabis
- Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68 M, 16309 Oued-Smar, Alger Algeria
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| | - Amar Ramdane-Cherif
- LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| | - Fawaz E. Alsaadi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
YAN S, Lü Y, LIU Z, REN M, HE H, XIAO L, GUO F, PENG M, LI X, WANG Y, XU X, YANG T, SHAO Z, HUANG J, XIAO M. Mining intrinsic information of convalescent patients after suffering coronavirus disease 2019 in Wuhan. J TRADIT CHIN MED 2022; 42:279-288. [PMID: 35473350 PMCID: PMC9924780 DOI: 10.19852/j.cnki.jtcm.20220225.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To summarize the potential characteristics of convalescent patients with coronavirus disease 2019 (COVID-19) in China based on emerging clinical tongue data and guide the treatment and recovery of COVID-19 patients from the perspective of Traditional Chinese Medicine tongue diagnosis. METHODS In this study, we developed and validated radiomics-based and lab-based methods as a novel approach to provide individualized pretreatment evaluation by analyzing different features to mine the orderliness behind tongue data of convalescent patients. In addition, this study analyzed the tongue features of convalescent patients from clinical tongue qualitative values, including thick and thin, fur, peeling, fat and lean, tooth marks and cracked, and greasy and putrid fur. RESULTS We included 2164 tongue images in total (34% from day 0, 35.4% from day 14 and 30.6% from day 28) from convalescent patients. The significance results are shown as follows. Firstly, as the recovery time prolongs, the L average values of tongue and coat decrease from 60.21 to 57.18 and from 60.06 to 57.03 respectively. Secondly, the decrease of abnormality rate of tongue coat, included greasy tongue fur, putrid fur, teeth-mark, thick-thin fur, are of significant statistical difference ( < 0.05). Thirdly, the average value of gray-level co-occurrence matrices increases from 0.173 to 0.194, the average value of entropy increases from 0.606 to 0.665, the average value of inverse difference normalized decrease from 0.981 to 0.979, and the average value of dissimilarity decrease from 0.1576 to 0.1828. The details of other radiomics features are describe in results section. CONCLUSIONS Our experiment shows that patients in different recovery periods have a relationship with quantitative values of tongue images, including L color space of the tongue and coat radiomics features analysis. This relationship can help clinical doctors master the recovery and health of patients as soon as possible and improve their understanding of the potential mechanisms underlying the dynamic changes and mechanisms underlying COVID-19.
Collapse
Affiliation(s)
- Shixing YAN
- 1 Department of TCM Data Intelligence, Shanghai Daosh Medical Technology Co., Ltd., Shanghai 201200, China
| | - Yi Lü
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Ziqing LIU
- 3 Electronical Medical Records and Information Management Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Meng REN
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Haiyang HE
- 1 Department of TCM Data Intelligence, Shanghai Daosh Medical Technology Co., Ltd., Shanghai 201200, China
| | - Li XIAO
- 5 College of Acupuncture and Massage, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng GUO
- 1 Department of TCM Data Intelligence, Shanghai Daosh Medical Technology Co., Ltd., Shanghai 201200, China
| | - Miao PENG
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Xiaoxia LI
- 1 Department of TCM Data Intelligence, Shanghai Daosh Medical Technology Co., Ltd., Shanghai 201200, China
| | - Yong WANG
- 4 Chinese Medicine Development research Center, Shanghai Literature Institute of TCM, Shanghai 200025, China
| | - Xi XU
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Tao YANG
- 6 College of Artificial Intelligence and Information Technology, Institute of Information and Technology Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zuoyu SHAO
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jingjing HUANG
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Mingzhong XIAO
- 2 Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Dr. XIAO Mingzhong, Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Affifiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China; Hubei Academy of Traditional Chinese Medicine, Wuhan 430074, China. , Telephone: +86-18908640865
| |
Collapse
|
25
|
Vineth Ligi S, Kundu SS, Kumar R, Narayanamoorthi R, Lai KW, Dhanalakshmi S. Radiological Analysis of COVID-19 Using Computational Intelligence: A Broad Gauge Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5998042. [PMID: 35251572 PMCID: PMC8890832 DOI: 10.1155/2022/5998042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Pulmonary medical image analysis using image processing and deep learning approaches has made remarkable achievements in the diagnosis, prognosis, and severity check of lung diseases. The epidemic of COVID-19 brought out by the novel coronavirus has triggered a critical need for artificial intelligence assistance in diagnosing and controlling the disease to reduce its effects on people and global economies. This study aimed at identifying the various COVID-19 medical imaging analysis models proposed by different researchers and featured their merits and demerits. It gives a detailed discussion on the existing COVID-19 detection methodologies (diagnosis, prognosis, and severity/risk detection) and the challenges encountered for the same. It also highlights the various preprocessing and post-processing methods involved to enhance the detection mechanism. This work also tries to bring out the different unexplored research areas that are available for medical image analysis and how the vast research done for COVID-19 can advance the field. Despite deep learning methods presenting high levels of efficiency, some limitations have been briefly described in the study. Hence, this review can help understand the utilization and pros and cons of deep learning in analyzing medical images.
Collapse
Affiliation(s)
- S. Vineth Ligi
- Department of Electronics and Communication Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - Soumya Snigdha Kundu
- Department of Computer Science Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - R. Kumar
- Department of Electronics and Communication Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - R. Narayanamoorthi
- Department of Electrical and Electronics Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, TN, India
| |
Collapse
|
26
|
Uddin M, Hassan MR. A novel feature based algorithm for soil type classification. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractAgriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent $$\varphi $$
φ
-Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.
Collapse
|
27
|
Hassan H, Ren Z, Zhao H, Huang S, Li D, Xiang S, Kang Y, Chen S, Huang B. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput Biol Med 2022; 141:105123. [PMID: 34953356 PMCID: PMC8684223 DOI: 10.1016/j.compbiomed.2021.105123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
This article presents a systematic overview of artificial intelligence (AI) and computer vision strategies for diagnosing the coronavirus disease of 2019 (COVID-19) using computerized tomography (CT) medical images. We analyzed the previous review works and found that all of them ignored classifying and categorizing COVID-19 literature based on computer vision tasks, such as classification, segmentation, and detection. Most of the COVID-19 CT diagnosis methods comprehensively use segmentation and classification tasks. Moreover, most of the review articles are diverse and cover CT as well as X-ray images. Therefore, we focused on the COVID-19 diagnostic methods based on CT images. Well-known search engines and databases such as Google, Google Scholar, Kaggle, Baidu, IEEE Xplore, Web of Science, PubMed, ScienceDirect, and Scopus were utilized to collect relevant studies. After deep analysis, we collected 114 studies and reported highly enriched information for each selected research. According to our analysis, AI and computer vision have substantial potential for rapid COVID-19 diagnosis as they could significantly assist in automating the diagnosis process. Accurate and efficient models will have real-time clinical implications, though further research is still required. Categorization of literature based on computer vision tasks could be helpful for future research; therefore, this review article will provide a good foundation for conducting such research.
Collapse
Affiliation(s)
- Haseeb Hassan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhaoyu Ren
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Huishi Zhao
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Shoujin Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Dan Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Shaohua Xiang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Yan Kang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; Medical Device Innovation Research Center, Shenzhen Technology University, Shenzhen, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
28
|
Haq AU, Li JP, Ahmad S, Khan S, Alshara MA, Alotaibi RM. Diagnostic Approach for Accurate Diagnosis of COVID-19 Employing Deep Learning and Transfer Learning Techniques through Chest X-ray Images Clinical Data in E-Healthcare. SENSORS (BASEL, SWITZERLAND) 2021; 21:8219. [PMID: 34960313 PMCID: PMC8707954 DOI: 10.3390/s21248219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023]
Abstract
COVID-19 is a transferable disease that is also a leading cause of death for a large number of people worldwide. This disease, caused by SARS-CoV-2, spreads very rapidly and quickly affects the respiratory system of the human being. Therefore, it is necessary to diagnosis this disease at the early stage for proper treatment, recovery, and controlling the spread. The automatic diagnosis system is significantly necessary for COVID-19 detection. To diagnose COVID-19 from chest X-ray images, employing artificial intelligence techniques based methods are more effective and could correctly diagnosis it. The existing diagnosis methods of COVID-19 have the problem of lack of accuracy to diagnosis. To handle this problem we have proposed an efficient and accurate diagnosis model for COVID-19. In the proposed method, a two-dimensional Convolutional Neural Network (2DCNN) is designed for COVID-19 recognition employing chest X-ray images. Transfer learning (TL) pre-trained ResNet-50 model weight is transferred to the 2DCNN model to enhanced the training process of the 2DCNN model and fine-tuning with chest X-ray images data for final multi-classification to diagnose COVID-19. In addition, the data augmentation technique transformation (rotation) is used to increase the data set size for effective training of the R2DCNNMC model. The experimental results demonstrated that the proposed (R2DCNNMC) model obtained high accuracy and obtained 98.12% classification accuracy on CRD data set, and 99.45% classification accuracy on CXI data set as compared to baseline methods. This approach has a high performance and could be used for COVID-19 diagnosis in E-Healthcare systems.
Collapse
Affiliation(s)
- Amin Ul Haq
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Jian Ping Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Sultan Ahmad
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Shakir Khan
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.A.A.); (R.M.A.)
| | - Mohammed Ali Alshara
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.A.A.); (R.M.A.)
| | - Reemiah Muneer Alotaibi
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.A.A.); (R.M.A.)
| |
Collapse
|
29
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
30
|
Abirami RS, Kumar GS. Comparative Study Based on Analysis of Coronavirus Disease (COVID-19) Detection and Prediction Using Machine Learning Models. SN COMPUTER SCIENCE 2021; 3:79. [PMID: 34841267 PMCID: PMC8605773 DOI: 10.1007/s42979-021-00965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 11/13/2022]
Abstract
As the number of COVID-19 cases increases day by day, the situation and livelihood of people throughout the world deteriorates. The goal of this study is to use machine learning models to identify disease and forecast whether or not a person is infected with the virus or another common illness. More articles about COVID-19 will be released starting in 2020, but we still do not have a reliable prediction mechanism to diagnose the disease with 100% accuracy. This comparison is done to see which model is the most effective in detecting and predicting disease. Despite the fact that we have immunizations, we require a best-prediction strategy to assist all humans in surviving. Researchers claimed that the supervised learning method predicts more accurately than the unsupervised learning method in the majority of studies. Supervised learning is the process of mapping inputs to derived outputs using a set of variables and created functions. This will also help us to optimize performance criteria using experience. It is further divided into two categories: classification and regression. According to recent studies, classification models are more accurate than other models.
Collapse
Affiliation(s)
- R. Sudha Abirami
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India
| | - G. Suresh Kumar
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India
| |
Collapse
|
31
|
Shome D, Kar T, Mohanty SN, Tiwari P, Muhammad K, AlTameem A, Zhang Y, Saudagar AKJ. COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11086. [PMID: 34769600 PMCID: PMC8583247 DOI: 10.3390/ijerph182111086] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022]
Abstract
In the recent pandemic, accurate and rapid testing of patients remained a critical task in the diagnosis and control of COVID-19 disease spread in the healthcare industry. Because of the sudden increase in cases, most countries have faced scarcity and a low rate of testing. Chest X-rays have been shown in the literature to be a potential source of testing for COVID-19 patients, but manually checking X-ray reports is time-consuming and error-prone. Considering these limitations and the advancements in data science, we proposed a Vision Transformer-based deep learning pipeline for COVID-19 detection from chest X-ray-based imaging. Due to the lack of large data sets, we collected data from three open-source data sets of chest X-ray images and aggregated them to form a 30 K image data set, which is the largest publicly available collection of chest X-ray images in this domain to our knowledge. Our proposed transformer model effectively differentiates COVID-19 from normal chest X-rays with an accuracy of 98% along with an AUC score of 99% in the binary classification task. It distinguishes COVID-19, normal, and pneumonia patient's X-rays with an accuracy of 92% and AUC score of 98% in the Multi-class classification task. For evaluation on our data set, we fine-tuned some of the widely used models in literature, namely, EfficientNetB0, InceptionV3, Resnet50, MobileNetV3, Xception, and DenseNet-121, as baselines. Our proposed transformer model outperformed them in terms of all metrics. In addition, a Grad-CAM based visualization is created which makes our approach interpretable by radiologists and can be used to monitor the progression of the disease in the affected lungs, assisting healthcare.
Collapse
Affiliation(s)
- Debaditya Shome
- School of Electronics Engineering, KIIT Deemed to be University, Odisha 751024, India; (D.S.); (T.K.)
| | - T. Kar
- School of Electronics Engineering, KIIT Deemed to be University, Odisha 751024, India; (D.S.); (T.K.)
| | - Sachi Nandan Mohanty
- Department of Computer Science & Engineering, Vardhaman College of Engineering (Autonomous), Hyderabad 501218, India;
| | - Prayag Tiwari
- Department of Computer Science, Aalto University, 02150 Espoo, Finland;
| | - Khan Muhammad
- Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Korea
| | - Abdullah AlTameem
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Yazhou Zhang
- Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| |
Collapse
|
32
|
Kaur J, Kaur P. Outbreak COVID-19 in Medical Image Processing Using Deep Learning: A State-of-the-Art Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2021; 29:2351-2382. [PMID: 34690493 PMCID: PMC8525064 DOI: 10.1007/s11831-021-09667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
From the month of December-19, the outbreak of Coronavirus (COVID-19) triggered several deaths and overstated every aspect of individual health. COVID-19 has been designated as a pandemic by World Health Organization. The circumstances placed serious trouble on every country worldwide, particularly with health arrangements and time-consuming responses. The increase in the positive cases of COVID-19 globally spread every day. The quantity of accessible diagnosing kits is restricted because of complications in detecting the existence of the illness. Fast and correct diagnosis of COVID-19 is a timely requirement for the prevention and controlling of the pandemic through suitable isolation and medicinal treatment. The significance of the present work is to discuss the outline of the deep learning techniques with medical imaging such as outburst prediction, virus transmitted indications, detection and treatment aspects, vaccine availability with remedy research. Abundant image resources of medical imaging as X-rays, Computed Tomography Scans, Magnetic Resonance imaging, formulate deep learning high-quality methods to fight against the pandemic COVID-19. The review presents a comprehensive idea of deep learning and its related applications in healthcare received over the past decade. At the last, some issues and confrontations to control the health crisis and outbreaks have been introduced. The progress in technology has contributed to developing individual's lives. The problems faced by the radiologists during medical imaging techniques and deep learning approaches for diagnosing the COVID-19 infections have been also discussed.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Prabhpreet Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
33
|
Hariri W, Narin A. Deep neural networks for COVID-19 detection and diagnosis using images and acoustic-based techniques: a recent review. Soft comput 2021; 25:15345-15362. [PMID: 34456618 PMCID: PMC8382671 DOI: 10.1007/s00500-021-06137-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 01/12/2023]
Abstract
The new coronavirus disease (COVID-19) has been declared a pandemic since March 2020 by the World Health Organization. It consists of an emerging viral infection with respiratory tropism that could develop atypical pneumonia. Experts emphasize the importance of early detection of those who have the COVID-19 virus. In this way, patients will be isolated from other people and the spread of the virus can be prevented. For this reason, it has become an area of interest to develop early diagnosis and detection methods to ensure a rapid treatment process and prevent the virus from spreading. Since the standard testing system is time-consuming and not available for everyone, alternative early screening techniques have become an urgent need. In this study, the approaches used in the detection of COVID-19 based on deep learning (DL) algorithms, which have been popular in recent years, have been comprehensively discussed. The advantages and disadvantages of different approaches used in literature are examined in detail. We further present the databases and major future challenges of DL-based COVID-19 detection. The computed tomography of the chest and X-ray images gives a rich representation of the patient's lung that is less time-consuming and allows an efficient viral pneumonia detection using the DL algorithms. The first step is the preprocessing of these images to remove noise. Next, deep features are extracted using multiple types of deep models (pretrained models, generative models, generic neural networks, etc.). Finally, the classification is performed using the obtained features to decide whether the patient is infected by coronavirus or it is another lung disease. In this study, we also give a brief review of the latest applications of cough analysis to early screen the COVID-19 and human mobility estimation to limit its spread.
Collapse
Affiliation(s)
- Walid Hariri
- Labged Laboratory, Computer Science Department, Badji Mokhtar Annaba University, Annaba, Algeria
| | - Ali Narin
- Department of Electrical and Electronics Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
34
|
Ravi V, Narasimhan H, Chakraborty C, Pham TD. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images. MULTIMEDIA SYSTEMS 2021; 28:1401-1415. [PMID: 34248292 PMCID: PMC8258271 DOI: 10.1007/s00530-021-00826-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/01/2021] [Indexed: 05/27/2023]
Abstract
Literature survey shows that convolutional neural network (CNN)-based pretrained models have been largely used for CoronaVirus Disease 2019 (COVID-19) classification using chest X-ray (CXR) and computed tomography (CT) datasets. However, most of the methods have used a smaller number of data samples for both CT and CXR datasets for training, validation, and testing. As a result, the model might have shown good performance during testing, but this type of model will not be more effective on unseen COVID-19 data samples. Generalization is an important term to be considered while designing a classifier that can perform well on completely unseen datasets. Here, this work proposes a large-scale learning with stacked ensemble meta-classifier and deep learning-based feature fusion approach for COVID-19 classification. The features from the penultimate layer (global average pooling) of EfficientNet-based pretrained models were extracted and the dimensionality of the extracted features reduced using kernel principal component analysis (PCA). Next, a feature fusion approach was employed to merge the features of various extracted features. Finally, a stacked ensemble meta-classifier-based approach was used for classification. It is a two-stage approach. In the first stage, random forest and support vector machine (SVM) were applied for prediction, then aggregated and fed into the second stage. The second stage includes logistic regression classifier that classifies the data sample of CT and CXR into either COVID-19 or Non-COVID-19. The proposed model was tested using large CT and CXR datasets, which are publicly available. The performance of the proposed model was compared with various existing CNN-based pretrained models. The proposed model outperformed the existing methods and can be used as a tool for point-of-care diagnosis by healthcare professionals.
Collapse
Affiliation(s)
- Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Harini Narasimhan
- Smart Materials Structures and Systems Lab, Indian Institute of Technology, Kanpur, India
| | - Chinmay Chakraborty
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, Jharkhand India
| | - Tuan D. Pham
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
35
|
Dogan O, Tiwari S, Jabbar MA, Guggari S. A systematic review on AI/ML approaches against COVID-19 outbreak. COMPLEX INTELL SYST 2021; 7:2655-2678. [PMID: 34777970 PMCID: PMC8256231 DOI: 10.1007/s40747-021-00424-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease, these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study, this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264 studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
Collapse
Affiliation(s)
- Onur Dogan
- Department of Industrial Engineering, Izmir Bakircay University, 35665 Izmir, Turkey
- Research Center for Data Analytics and Spatial Data Modeling (RC-DAS), Izmir Bakircay University, 35665 Izmir, Turkey
| | - Sanju Tiwari
- Department of Computer Science, Universidad Autonoma de Tamaulipas, Ciudad Victoria, Mexico
| | - M. A. Jabbar
- Vardhaman College of Engineering, Kacharam, India
| | | |
Collapse
|
36
|
Deep Learning in Classification of Covid-19 Coronavirus, Pneumonia and Healthy Lungs on CXR and CT Images. J Med Biol Eng 2021; 41:514-522. [PMID: 34127912 PMCID: PMC8190751 DOI: 10.1007/s40846-021-00630-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 12/05/2022]
Abstract
Purpose In this paper, the transfer learning method has been implemented to chest X-ray (CXR) and computed tomography (CT) bio-images of diverse kinds of lungs maladies, including CORONAVIRUS 2019 (COVID-19). COVID-19 identification is a difficult assignment that constantly demands a careful analysis of a patient’s clinical images, as COVID-19 is found to be very alike to pneumonic viral lung infection. In this paper, a transfer learning model to accelerate prediction processes and to assist medical professionals is proposed. Finally, the main purpose is to do an accurate classification between Covid-19, pneumonia and, healthy lungs using CXR and CT images. Methods Learning transfer gives the possibility to find out about this new illness COVID-19, using the knowledge we have about the pneumonia virus. This demonstrates the apprehensiveness achieved from a new architecture trained to detect virus-related pneumonia that must be transferred for COVID-19 detection. Transfer learning presents a considerable dissimilarity in results when compared to the result of traditional groupings. It is not necessary to create a separate model for the classification of COVID-19. This simplifies complicated issues by adopting the available model for COVID-19 determination. Automated diagnosis of COVID-19 using Haralick texture features is focused on segmented lung images and problematic lung patches. Lung patches are necessary for the augmentation of COVID-19 image data. Results The obtained outcomes are quite reliable for all distinctive processes as the proposed architecture can distinguish healthy lungs, pneumonia, COVID-19. Conclusions The results suggest that the implemented model is improved considering other existing models because the obtained classification accuracy is over the recently obtained results. It is a belief that the new architecture that is implemented in this study, delivers a petite step in building refined Coronavirus 2019 diagnosis architecture using CXR and CT bio-images.
Collapse
|
37
|
Montalbo FJP. Truncating a densely connected convolutional neural network with partial layer freezing and feature fusion for diagnosing COVID-19 from chest X-rays. MethodsX 2021; 8:101408. [PMID: 34109106 PMCID: PMC8178958 DOI: 10.1016/j.mex.2021.101408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023] Open
Abstract
Deep learning and computer vision revolutionized a new method to automate medical image diagnosis. However, to achieve reliable and state-of-the-art performance, vision-based models require high computing costs and robust datasets. Moreover, even with the conventional training methods, large vision-based models still involve lengthy epochs and costly disk consumptions that can entail difficulty during deployment due to the absence of high-end infrastructures. Therefore, this method modified the training approach on a vision-based model through layer truncation, partial layer freezing, and feature fusion. The proposed method was employed on a Densely Connected Convolutional Neural Network (CNN), the DenseNet model, to diagnose whether a Chest X-Ray (CXR) is well, has Pneumonia, or has COVID-19. From the results, the performance to parameter size ratio highlighted this method's effectiveness to train a DenseNet model with fewer parameters compared to traditionally trained state-of-the-art Deep CNN (DCNN) models, yet yield promising results.•This novel method significantly reduced the model's parameter size without sacrificing much of its classification performance.•The proposed method had better performance against some state-of-the-art Deep Convolutional Neural Network (DCNN) models that diagnosed samples of CXRs with COVID-19.•The proposed method delivered a conveniently scalable, reproducible, and deployable DCNN model for most low-end devices.
Collapse
|
38
|
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021; 13:153-175. [PMID: 33886097 PMCID: PMC8060789 DOI: 10.1007/s12539-021-00431-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the application of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 pandemic outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey.
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, Research Center for AI and IoT, Near East University, Nicosia, Mersin 10, Turkey
| | - Ahmad Rasheed
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
| |
Collapse
|
39
|
Ibrahim DM, Elshennawy NM, Sarhan AM. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput Biol Med 2021; 132:104348. [PMID: 33774272 PMCID: PMC7977039 DOI: 10.1016/j.compbiomed.2021.104348] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022]
Abstract
Corona Virus Disease (COVID-19) has been announced as a pandemic and is spreading rapidly throughout the world. Early detection of COVID-19 may protect many infected people. Unfortunately, COVID-19 can be mistakenly diagnosed as pneumonia or lung cancer, which with fast spread in the chest cells, can lead to patient death. The most commonly used diagnosis methods for these three diseases are chest X-ray and computed tomography (CT) images. In this paper, a multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer from a combination of chest x-ray and CT images is proposed. This combination has been used because chest X-ray is less powerful in the early stages of the disease, while a CT scan of the chest is useful even before symptoms appear, and CT can precisely detect the abnormal features that are identified in images. In addition, using these two types of images will increase the dataset size, which will increase the classification accuracy. To the best of our knowledge, no other deep learning model choosing between these diseases is found in the literature. In the present work, the performance of four architectures are considered, namely: VGG19-CNN, ResNet152V2, ResNet152V2 + Gated Recurrent Unit (GRU), and ResNet152V2 + Bidirectional GRU (Bi-GRU). A comprehensive evaluation of different deep learning architectures is provided using public digital chest x-ray and CT datasets with four classes (i.e., Normal, COVID-19, Pneumonia, and Lung cancer). From the results of the experiments, it was found that the VGG19 +CNN model outperforms the three other proposed models. The VGG19+CNN model achieved 98.05% accuracy (ACC), 98.05% recall, 98.43% precision, 99.5% specificity (SPC), 99.3% negative predictive value (NPV), 98.24% F1 score, 97.7% Matthew's correlation coefficient (MCC), and 99.66% area under the curve (AUC) based on X-ray and CT images.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Computers and Control Engineering, Faculty of Engineering, Tanta University, Tanta, 31733, Egypt; Department of Information Technology, College of Computer, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Nada M Elshennawy
- Department of Computers and Control Engineering, Faculty of Engineering, Tanta University, Tanta, 31733, Egypt.
| | - Amany M Sarhan
- Department of Computers and Control Engineering, Faculty of Engineering, Tanta University, Tanta, 31733, Egypt.
| |
Collapse
|
40
|
Saha P, Mukherjee D, Singh PK, Ahmadian A, Ferrara M, Sarkar R. GraphCovidNet: A graph neural network based model for detecting COVID-19 from CT scans and X-rays of chest. Sci Rep 2021; 11:8304. [PMID: 33859222 PMCID: PMC8050058 DOI: 10.1038/s41598-021-87523-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
COVID-19, a viral infection originated from Wuhan, China has spread across the world and it has currently affected over 115 million people. Although vaccination process has already started, reaching sufficient availability will take time. Considering the impact of this widespread disease, many research attempts have been made by the computer scientists to screen the COVID-19 from Chest X-Rays (CXRs) or Computed Tomography (CT) scans. To this end, we have proposed GraphCovidNet, a Graph Isomorphic Network (GIN) based model which is used to detect COVID-19 from CT-scans and CXRs of the affected patients. Our proposed model only accepts input data in the form of graph as we follow a GIN based architecture. Initially, pre-processing is performed to convert an image data into an undirected graph to consider only the edges instead of the whole image. Our proposed GraphCovidNet model is evaluated on four standard datasets: SARS-COV-2 Ct-Scan dataset, COVID-CT dataset, combination of covid-chestxray-dataset, Chest X-Ray Images (Pneumonia) dataset and CMSC-678-ML-Project dataset. The model shows an impressive accuracy of 99% for all the datasets and its prediction capability becomes 100% accurate for the binary classification problem of detecting COVID-19 scans. Source code of this work can be found at GitHub-link .
Collapse
Affiliation(s)
- Pritam Saha
- Department of Electrical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Debadyuti Mukherjee
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Kolkata, 700106, India
| | - Ali Ahmadian
- Institute of IR 4.0, The National University of Malaysia, Bangi, 43600 UKM, Selangor, Malaysia.
- School of Mathematical Sciences, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Massimiliano Ferrara
- ICRIOS-The Invernizzi Centre for Research in Innovation, Organization, Strategy and Entrepreneurship, Department of Management and Technology, Bocconi University, Via Sarfatti, 25, 20136, Milan (MI), Italy
| | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
41
|
P SAB, Annavarapu CSR. Deep learning-based improved snapshot ensemble technique for COVID-19 chest X-ray classification. APPL INTELL 2021; 51:3104-3120. [PMID: 34764590 PMCID: PMC7986181 DOI: 10.1007/s10489-021-02199-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
COVID-19 has proven to be a deadly virus, and unfortunately, it triggered a worldwide pandemic. Its detection for further treatment poses a severe threat to researchers, scientists, health professionals, and administrators worldwide. One of the daunting tasks during the pandemic for doctors in radiology is the use of chest X-ray or CT images for COVID-19 diagnosis. Time is required to inspect each report manually. While a CT scan is the better standard, an X-ray is still useful because it is cheaper, faster, and more widely used. To diagnose COVID-19, this paper proposes to use a deep learning-based improved Snapshot Ensemble technique for efficient COVID-19 chest X-ray classification. In addition, the proposed method takes advantage of the transfer learning technique using the ResNet-50 model, which is a pre-trained model. The proposed model uses the publicly accessible COVID-19 chest X-ray dataset consisting of 2905 images, which include COVID-19, viral pneumonia, and normal chest X-ray images. For performance evaluation, the model applied the metrics such as AU-ROC, AU-PR, and Jaccard Index. Furthermore, it also obtained a multi-class micro-average of 97% specificity, 95% f 1-score, and 95% classification accuracy. The obtained results demonstrate that the performance of the proposed method outperformed those of several existing methods. This method appears to be a suitable and efficient approach for COVID-19 chest X-ray classification.
Collapse
Affiliation(s)
- Samson Anosh Babu P
- Department of Computer Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004 India
| | | |
Collapse
|
42
|
Elzeki OM, Shams M, Sarhan S, Abd Elfattah M, Hassanien AE. COVID-19: a new deep learning computer-aided model for classification. PeerJ Comput Sci 2021; 7:e358. [PMID: 33817008 PMCID: PMC7959596 DOI: 10.7717/peerj-cs.358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/19/2020] [Indexed: 05/09/2023]
Abstract
Chest X-ray (CXR) imaging is one of the most feasible diagnosis modalities for early detection of the infection of COVID-19 viruses, which is classified as a pandemic according to the World Health Organization (WHO) report in December 2019. COVID-19 is a rapid natural mutual virus that belongs to the coronavirus family. CXR scans are one of the vital tools to early detect COVID-19 to monitor further and control its virus spread. Classification of COVID-19 aims to detect whether a subject is infected or not. In this article, a model is proposed for analyzing and evaluating grayscale CXR images called Chest X-Ray COVID Network (CXRVN) based on three different COVID-19 X-Ray datasets. The proposed CXRVN model is a lightweight architecture that depends on a single fully connected layer representing the essential features and thus reducing the total memory usage and processing time verse pre-trained models and others. The CXRVN adopts two optimizers: mini-batch gradient descent and Adam optimizer, and the model has almost the same performance. Besides, CXRVN accepts CXR images in grayscale that are a perfect image representation for CXR and consume less memory storage and processing time. Hence, CXRVN can analyze the CXR image with high accuracy in a few milliseconds. The consequences of the learning process focus on decision making using a scoring function called SoftMax that leads to high rate true-positive classification. The CXRVN model is trained using three different datasets and compared to the pre-trained models: GoogleNet, ResNet and AlexNet, using the fine-tuning and transfer learning technologies for the evaluation process. To verify the effectiveness of the CXRVN model, it was evaluated in terms of the well-known performance measures such as precision, sensitivity, F1-score and accuracy. The evaluation results based on sensitivity, precision, recall, accuracy, and F1 score demonstrated that, after GAN augmentation, the accuracy reached 96.7% in experiment 2 (Dataset-2) for two classes and 93.07% in experiment-3 (Dataset-3) for three classes, while the average accuracy of the proposed CXRVN model is 94.5%.
Collapse
Affiliation(s)
- Omar M. Elzeki
- Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Mahmoud Shams
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shahenda Sarhan
- Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | | | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Egypt, Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
43
|
Chakraborty M, Dhavale SV, Ingole J. Corona-Nidaan: lightweight deep convolutional neural network for chest X-Ray based COVID-19 infection detection. APPL INTELL 2021; 51:3026-3043. [PMID: 34764582 PMCID: PMC7851642 DOI: 10.1007/s10489-020-01978-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
The coronavirus COVID-19 pandemic is today's major public health crisis, we have faced since the Second World War. The pandemic is spreading around the globe like a wave, and according to the World Health Organization's recent report, the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic, and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively. Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study, Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia, and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian Patient chest X-ray dataset with good accuracy.
Collapse
Affiliation(s)
- Mainak Chakraborty
- Defence Institute of Advanced Technology (DIAT), Girinagar Pune, 411025 India
| | | | - Jitendra Ingole
- Smt. Kashibai Navale Medical College and General Hospital, Narhe Pune, 411041 India
| |
Collapse
|